Resumen:
Over the course of the last 50 years, a large number of major technological advances have contributed to the development of higher-strength, high-performance materials that provide excellent benefits. Nevertheless, in most cases, after a very short useful life, these products become waste material and contribute to environmental degra‐ dation. This situation has created an environmental crisis that has reached global proportions. In efforts to combat this issue and to promote sustainable development and reduce environmental pollution, some investigations have focused on recycling using innovative and clean technologies, such as gamma radiation, as an alternative to conventional mechanical and chemical recycling procedures. In this context, the reuse and recycling of waste materials and the use of gamma radiation are useful tools for improving the mechanical properties of concrete; for example, the compressive strength and modulus of elasticity are improved by the addition of waste particles and application of gamma radiation. In this chapter, we propose the use of gamma radiation as a method for modifying waste materials; for instance, polyethylene terephthalate plastic bottles, automotive tire rubber, and the cellulose in Tetra Pak containers, and their reuse to enhance the properties of concrete.