Mostrar el registro sencillo del objeto digital

dc.contributor.author Reyes Contreras, Delfino
dc.contributor.author Heo, Hyeonu
dc.contributor.author Martínez Arguello, Ángel Marbel
dc.contributor.author Fujita, Yasuhisa
dc.contributor.author Neogi, Purnima B.
dc.contributor.author Neogi, Arup
dc.date.accessioned 2025-02-25T19:10:39Z
dc.date.available 2025-02-25T19:10:39Z
dc.date.issued 2024-05-08
dc.identifier.issn 2694-0884
dc.identifier.uri http://hdl.handle.net/20.500.11799/142397
dc.description.abstract This work introduces a 2D PnC-based acoustic spectrometer capable of analyzing small solution volumes (25 μl) in aqueous environments with significative accuracy and reliability, thus addressing key limitations in current acoustic spectroscopic techniques. Optimally introducing rows of defects into the PnC structure enables guided acoustic modes to propagate at desired frequencies within the bandgap.We construct an acoustic interferometer to leverage the properties of acoustic cavities within these waveguides, which can configure and modulate wave propagation. Our approach involves harnessing the interference between acoustic waves in the two arms of a defects-based waveguide within a PnC, one arm containing an analyte cavity-holder. We demonstrate that the presence of an analyte (sucrose solutions at various concentrations) induces alterations in the acoustic properties of the cavity, leading to observable shifts in transmission characteristics of the propagating acoustic modes. We achieve exceptional spectral resolution through experimentation, facilitating highly sensitive acoustic sensing even with small analyte volumes (< 25 μl). We utilize finite element method simulations to validate our findings and predict spectral shifts resulting from modified acoustic interference. Additionally, we provide a phenomenological description using tight-binding models. Notably, our approach surpasses conventional PnC sensors like Mach-Zehnder interferometers by overcoming challenges associated with analyte uniformity. es
dc.description.sponsorship Proyecto 6753/2022CIB es
dc.language.iso eng es
dc.publisher IEEE es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es
dc.subject Acoustic spectrometer es
dc.subject interferometer es
dc.subject phononic crystal es
dc.subject waveguide es
dc.subject sensing es
dc.subject.classification CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA es
dc.title Underwater Analyte Sensing Using a Phononic Crystal Waveguide-Based Interferometric Acoustic Spectrometer es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Ciencias es
dc.ambito Internacional es
dc.cve.CenCos 10301 es
dc.relation.vol 4
dc.validacion.itt No es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Underwater Analyte Sensing Using a Phononic Crystal Waveguide-Based Interferometric Acoustic Spectrometer
  • Autor
  • Reyes Contreras, Delfino
  • Heo, Hyeonu
  • Martínez Arguello, Ángel Marbel
  • Fujita, Yasuhisa
  • Neogi, Purnima B.
  • Neogi, Arup
  • Fecha de publicación
  • 2024-05-08
  • Editor
  • IEEE
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Acoustic spectrometer
  • interferometer
  • phononic crystal
  • waveguide
  • sensing
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas