Mostrar el registro sencillo del objeto digital

dc.contributor.author Leonardo Daniel, Estrada Moreno
dc.contributor.author Lourdes, Loza Hernández
dc.contributor.author Roberto Alejo Eleuterio, /
dc.contributor.author Valdovinos Rosas, Rosa María
dc.date.accessioned 2025-02-10T19:16:44Z
dc.date.available 2025-02-10T19:16:44Z
dc.date.issued 2024-06-06
dc.identifier.issn 1548-0992
dc.identifier.uri http://hdl.handle.net/20.500.11799/142134
dc.description Artículo científico es
dc.description.abstract The global emergency of COVID-19 caused by the SARS-CoV-2 virus at the end of 2019, it was without a doubt a critical and historical point for society in general; for instance, the effective development of vaccines, as well as the efficient distribution of them; They were an unprecedented challenge to slow down the spread or mitigate its impact on societies around the world. This article specifies three bio-inspired metaheuristic algorithms (genetic algorithm, particle swarm optimization algorithm, and artificial bee colony algorithm) that were used in the context of the capacitated vehicle routing problem to generate vaccine distribution routes, specifically, COVID-19 vaccine for over 18 years old the first and the second doses applications in Mexico, particularly in the State of Mexico. The quality of the solutions obtained by these algorithms is compared, and the performance of the particle swarm optimization (PSO) algorithm being superior in solution quality. The results show that the construction of vaccine distribution routes applying bio-inspired algorithms determines reliable scenarios that support the decisionmaking of the personnel dedicated to carrying out this activity. es
dc.description.sponsorship COMECYT es
dc.language.iso eng es
dc.publisher IEEE es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0 es
dc.subject Artificial Bee Colony Algorithm es
dc.subject Bio-inspired algorithms es
dc.subject Capacitated Vehicle Routing Problem es
dc.subject Genetic Algorithm es
dc.subject Metaheuristics es
dc.subject Particle Swarm Optimization Algorithm. es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title COVID-19 Vaccine’s Distribution Routes with Bioinspired Metaheuristic Algorithms: Resoluteness es
dc.type Artículo es
dc.provenance Científica es
dc.road Verde es
dc.organismo Ingeniería es
dc.ambito Internacional es
dc.cve.CenCos 20501 es
dc.relation.vol 22
dc.relation.no 6
dc.relation.doi https://latamt.ieeer9.org/index.php/transactions/article/view/8709
dc.validacion.itt Si es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • COVID-19 Vaccine’s Distribution Routes with Bioinspired Metaheuristic Algorithms: Resoluteness
  • Autor
  • Leonardo Daniel, Estrada Moreno
  • Lourdes, Loza Hernández
  • Roberto Alejo Eleuterio, /
  • Valdovinos Rosas, Rosa María
  • Fecha de publicación
  • 2024-06-06
  • Editor
  • IEEE
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Artificial Bee Colony Algorithm
  • Bio-inspired algorithms
  • Capacitated Vehicle Routing Problem
  • Genetic Algorithm
  • Metaheuristics
  • Particle Swarm Optimization Algorithm.
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas