Resumen:
The present work aims to calculate a bottom-up IPCC-Tier 2 inventory for enteric CH4 emissions from cattle in
Mexico, disaggregate the inventory into different geo-climatic regions to analyze the effect of the contrasting
climates of Mexico on the inventory and identify the relevant sources of uncertainty associated with the inventory.
Peer-reviewed country-specific emission factors (EF), activity data (AD) on animal characteristics,
feeding management, and CH4 conversion factors (Ym) were used in developing the emissions inventory. Monte
Carlo simulation (MCS) was used to propagate the uncertainty throughout the Tier 2 model (T2model).
Spearman-ranked correlation analysis (SRCA) was used to identify relevant input parameters (IPAs) for which
CH4 emissions variables were most sensitive. The estimated inventory for the year 2018 was 2039 Gg CH4 year 1
with an uncertainty of 18.3 % to +21.2 %. The geo-climatic regions had an important influence on the inventory
because emissions varied among regions, with the dry and tropical sub-humid geo-climatic regions being
the highest CH4 emitters due to their larger cattle populations and the effect of climate on cattle diets’ quality,
and in turn, the effect of diet on CH4 emission. The IPAs associated with dry matter intake. and groossenergy intake (GEI) of cattle considerably impacted the uncertainty of enteric CH4 emission estimates. This study
concludes that implementing a bottom-up Tier 2 approach using disaggregated AD and country-specific EF allows
a more accurate inventory estimation and assessment of its uncertainty than existing inventories. Future
efforts to improve the quality of CH4 inventories must focus on improving the accuracy of AD, like DMI, GEI, and
country-specific EF.
Descripción:
El presente trabajo tiene como objetivo calcular un inventario ascendente IPCC-Tier 2 para las emisiones de CH4 entérico del ganado en México, desagregar el inventario en diferentes regiones geoclimáticas para analizar el efecto de los contrastes climáticos de México en el inventario e identificar las fuentes relevantes de incertidumbre asociadas con el inventario. Se utilizó la simulación de Monte Carlo (MCS) para propagar la incertidumbre a través del modelo de nivel 2 (modelo T2). Se utilizó el análisis de correlación de Spearman (SRCA) para identificar los parámetros de entrada relevantes (IPA) para los que las variables de emisiones de CH4 eran más sensibles. El inventario estimado para el año 2018 fue de 2039 Gg CH4 year 1 con una incertidumbre de 18,3 % a +21,2 %. Las regiones geoclimáticas tuvieron una influencia importante en el inventario, ya que las emisiones variaron entre regiones, siendo las regiones geoclimáticas secas y tropicales subhúmedas las mayores emisoras de CH4 debido a sus mayores poblaciones de ganado y al efecto del clima en la calidad de la dieta del ganado y, a su vez, el efecto de la dieta en la emisión de CH4.