Mostrar el registro sencillo del objeto digital

dc.contributor Rivera, Gilberto
dc.contributor Cruz Reyes, Laura
dc.contributor Dorronsoro, Bernabé
dc.contributor Rosete, Alejandro
dc.contributor.author Rosales Martínez, Octavio
dc.contributor.author Flores Fuentes, Allan Antonio
dc.contributor.author Mercado Cabrera, Antonio
dc.contributor.author Peña Eguiluz, Rosendo
dc.contributor.author Granda Gutiérrez, Everardo Efrén
dc.contributor.author García Mejía, Juan Fernando
dc.date.accessioned 2024-02-15T17:27:10Z
dc.date.available 2024-02-15T17:27:10Z
dc.date.issued 2023-09-13
dc.identifier.isbn 978-3-031-38325-0
dc.identifier.uri http://hdl.handle.net/20.500.11799/140021
dc.description Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications. Studies in Big Data es
dc.description.abstract An automatic recognition method of nine atomic species through ensemble classifiers based on decision trees from experimental data collected by optical emission spectroscopy (OES) is presented. Experimental spectra were obtained from OES of an atmospheric pressure non-thermal plasma (APNTP) generated in parallel circular plates dielectric barrier discharge reactor (DBDR). APNTP’s emission was detected and acquired by a monochromator coupled to a photomultiplier and a data acquisition system. Data were organized in columns as relative intensity versus wavelength to generate a synthetic spectra dataset. The performance categorization of candidate classifiers was assessed using the F1 metric; after that, the grid-search hyperparameter optimization technique allowed the selection of the best combination to construct the final ensemble classifier. After the generation of the synthetic spectra dataset, they were evaluated using parametric statistics with analysis of variance (ANOVA) and non-parametric statistics with Friedman’s tests. Subsequently, the critical distance was obtained by Nemenyi parametric profile, showing the best-classified groups with prediction accuracy of the species between 93 and 100% and a confidence value of 95% in the wavelength range from 200 to 890 nm. Finally, the automatic atomic species recognition test was carried out utilizing a set of nine files, each one corresponding to an experimental spectrum obtained from an APNTP generated in three different argon-oxygen gas mixtures, where Ar I, O I, and O II species with predictions range from 73 to 100% (86.5% mean). Further, the proposed method could be trained to analyze various species generated by some other type of electric discharge. es
dc.language.iso eng es
dc.publisher Springer es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es
dc.subject Machine Learning es
dc.subject Parametric and non-parametric statistics es
dc.subject Optical emission spectroscopy es
dc.subject Atmospheric pressure non-thermal plasma es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Machine Learning for Identifying Atomic Species from Optical Emission Spectra Generated by an Atmospheric Pressure Non-thermal Plasma es
dc.type Capítulo de Libro es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Atlacomulco es
dc.ambito Nacional es
dc.relation.vol 132
dc.relation.doi https://doi.org/10.1007/978-3-031-38325-0_13


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Machine Learning for Identifying Atomic Species from Optical Emission Spectra Generated by an Atmospheric Pressure Non-thermal Plasma
  • Autor
  • Rosales Martínez, Octavio
  • Flores Fuentes, Allan Antonio
  • Mercado Cabrera, Antonio
  • Peña Eguiluz, Rosendo
  • Granda Gutiérrez, Everardo Efrén
  • García Mejía, Juan Fernando
  • Director(es) de tesis, compilador(es) o coordinador(es)
  • Rivera, Gilberto
  • Cruz Reyes, Laura
  • Dorronsoro, Bernabé
  • Rosete, Alejandro
  • Fecha de publicación
  • 2023-09-13
  • Editor
  • Springer
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • Machine Learning
  • Parametric and non-parametric statistics
  • Optical emission spectroscopy
  • Atmospheric pressure non-thermal plasma
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas