Mostrar el registro sencillo del objeto digital
dc.contributor.author | Qian Dong![]() |
|
dc.contributor.author | Guo-Hua Sun![]() |
|
dc.contributor.author | Ávila Aoki, Manuel![]() |
|
dc.contributor.author | Chang-Yuan Chen![]() |
|
dc.contributor.author | Shi-Hai Dong![]() |
|
dc.date.accessioned | 2023-11-23T04:27:51Z | |
dc.date.available | 2023-11-23T04:27:51Z | |
dc.date.issued | 2019-06-26 | |
dc.identifier.issn | 1793-6632 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11799/139301 | |
dc.description.abstract | We find that the analytical solutions to quantum system with a quartic potential V(x)=ax2+bx4 (arbitrary a and b>0 are real numbers) are given by the triconfluent Heun functions HT(α,β,γ;z). The properties of the wave functions, which are strongly relevant for the potential parameters a and b, are illustrated. It is shown that the wave functions are shrunk to the origin for a given b when the potential parameter a increases, while the wave peak of wave functions is concaved to the origin when the negative potential parameter |a| increases or parameter b decreases for a given negative potential parameter a. The minimum value of the double well case (a<0) is given by Vmin=−a2/(4b) at x=±|a|/2b−−−−−√ | es |
dc.language.iso | eng | es |
dc.publisher | Modern Physics Letters A | es |
dc.rights | openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es |
dc.subject | Exact solution, quartic potential, triconfluent Heun function | es |
dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | es |
dc.title | Exact solutions of a quartic potential | es |
dc.type | Artículo | es |
dc.provenance | Científica | es |
dc.road | Dorada | es |
dc.organismo | Centro Universitario UAEM Valle de Chalco | es |
dc.ambito | Internacional | es |
dc.relation.vol | 34 |