Mostrar el registro sencillo del objeto digital

dc.contributor.author García Amaro, Ernesto
dc.contributor.author Cervantes Canales, Jair
dc.contributor.author Espejel Cabrera, Josué
dc.contributor.author Ruiz Castilla, José Sergio
dc.contributor.author GARCIA LAMONT, FARID
dc.date.accessioned 2020-11-14T08:44:34Z
dc.date.available 2020-11-14T08:44:34Z
dc.date.issued 2020-10-05
dc.identifier.isbn 978-3-030-60795-1
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/20.500.11799/109514
dc.description.abstract The extraction of characteristics, currently, plays an important role, likewise, it is considered a complex task, allowing to obtain essential descriptors of the processed images, differentiating particular characteristics between different classes, even when they share similarity with each other, guaranteeing the delivery of information not redundant to classification algorithms. In this research, a system for the recogntion of diseases and pests in tomato plant leaves has been implemented. For this reason, a methodology represented in three modules has been developed: segmentation, feature extraction and classification; as a first instance, the images are entered into the system, which were obtained from the Plantvillage free environment dataset; subsequently, two segmentation techniques, Otsu and PCA, have been used, testing the effectiveness of each one; likewise, feature extraction has been applied to the dataset, obtaining texture descriptors with the Haralick and LBP algorithm, and chromatic descriptors through the Hu moments, Fourier descriptors, discrete cosine transform DCT and Gabor characteristics; finally, classification algorithms such as: SVM, Backpropagation, Naive Bayes, KNN and Random Forests, were tested with the characteristics obtained from the previous stages, in addition, showing the performance of each one of them. es
dc.language.iso eng es
dc.publisher Springer es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject Tomato diseases es
dc.subject Artificial vision es
dc.subject Feature extraction es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Identification of Diseases and Pests in Tomato Plants Through Artificial Vision es
dc.type Capítulo de Libro es
dc.provenance Tecnológica y de Inovación es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.cve.progEstudios 6145 es
dc.relation.doi 10.1007/978-3-030-60796-8_9


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Identification of Diseases and Pests in Tomato Plants Through Artificial Vision
  • Autor
  • García Amaro, Ernesto
  • Cervantes Canales, Jair
  • Espejel Cabrera, Josué
  • Ruiz Castilla, José Sergio
  • GARCIA LAMONT, FARID
  • Fecha de publicación
  • 2020-10-05
  • Editor
  • Springer
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • Tomato diseases
  • Artificial vision
  • Feature extraction
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas