Mostrar el registro sencillo del objeto digital

dc.contributor.author HERNANDEZ CASTAÑEDA, NESTOR
dc.contributor.author GARCIA HERNANDEZ, RENE ARNULFO
dc.contributor.author HERNANDEZ CASTAÑEDA, ANGEL
dc.contributor.author Ledeneva, Yulia
dc.creator HERNANDEZ CASTAÑEDA, NESTOR; 858428
dc.creator GARCIA HERNANDEZ, RENE ARNULFO; 202667
dc.creator HERNANDEZ CASTAÑEDA, ANGEL; 447784
dc.creator Ledeneva, Yulia;#0000-0003-0766-542X
dc.date.accessioned 2020-11-13T03:36:25Z
dc.date.available 2020-11-13T03:36:25Z
dc.date.issued 2020-10-12
dc.identifier.issn 2007-9737
dc.identifier.uri http://hdl.handle.net/20.500.11799/109470
dc.description.abstract The main problem for generating an extractive automatic text summary (EATS) is to detect the key themes of a text. For this task, unsupervised approaches cluster the sentences of the original text to find the key sentences that take part in an automatic summary. The quality of an automatic summary is evaluated using similarity metrics with human-made summaries. However, the relationship between the quality of the human-made summaries and the internal quality of the clustering is unclear. First, this paper proposes a comparison of the correlation of the quality of a human-made summary to the internal quality of the clustering validation index for finding the best correlation with a clustering validation index. Second, in this paper, an evolutionary method based on the best above internal clustering validation index for an automatic text summarization task is proposed. Our proposed unsupervised method for EATS has the advantage of not requiring information regarding the specific classes or themes of a text, and is therefore domain- and language-independent. The high results obtained by our method, using the most-competitive standard collection for EATS, prove that our method maintains a high correlation with human-made summaries, meeting the specific features of the groups, for example, compaction, separation, distribution, and density. es
dc.language.iso eng es
dc.publisher Computación y Sistemas es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject Procesamiento de Lenguaje Natural es
dc.subject Lingüística Computacional es
dc.subject Automatic text summarization es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Evolutionary Automatic Text Summarization using Cluster Validation Indexes es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Unidad Académica Profesional Tianguistenco es
dc.ambito Internacional es
dc.cve.CenCos 31201 es
dc.audience students es
dc.audience researchers es
dc.type.conacyt article
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Evolutionary Automatic Text Summarization using Cluster Validation Indexes
  • Autor
  • HERNANDEZ CASTAÑEDA, NESTOR
  • GARCIA HERNANDEZ, RENE ARNULFO
  • HERNANDEZ CASTAÑEDA, ANGEL
  • Ledeneva, Yulia
  • Fecha de publicación
  • 2020-10-12
  • Editor
  • Computación y Sistemas
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Procesamiento de Lenguaje Natural
  • Lingüística Computacional
  • Automatic text summarization
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas