Mostrar el registro sencillo del objeto digital

dc.contributor.author MEJIA MUÑOZ, JOSE MANUEL
dc.contributor.author Ochoa, Alberto
dc.contributor.author CRUZ MEJIA, OLIVERIO
dc.contributor.author Mederos, Boris
dc.creator MEJIA MUÑOZ, JOSE MANUEL; 240661
dc.creator Ochoa, Alberto;#0000-0002-9183-6086
dc.creator CRUZ MEJIA, OLIVERIO; 36009
dc.creator Mederos, Boris;#0000-0002-0131-7566
dc.date.accessioned 2020-02-27T15:42:22Z
dc.date.available 2020-02-27T15:42:22Z
dc.date.issued 2020-01-08
dc.identifier.issn 1022-0038
dc.identifier.uri http://hdl.handle.net/20.500.11799/105907
dc.description Articulo de investigacion idizado en JCR con factor de impacto 2.2 es
dc.description.abstract The detection and transmission of a physical variable over time, by a node of a sensor network to its sink node, represents a significant communication overload and consequently one of the main energy consumption processes. In this article we present an algorithm for the prediction of time series, with which it is expected to reduce the energy consumption of a sensor network, by reducing the number of transmissions when reporting to the sink node only when the prediction of the sensed value differs in certain magnitude, to the actual sensed value. For this end, the proposed algorithm combines a wavelet multiresolution transform with robust prediction using Gaussian process. The data is processed in wavelet domain, taking advantage of the transform ability to capture geometric information and decomposition in more simple signals or subbands. Subsequently, the decomposed signal is approximated by Gaussian process one for each subband of the wavelet, in this manner the Gaussian process is given to learn a much simple signal. Once the process is trained, it is ready to make predictions. We compare our method with pure Gaussian process prediction showing that the proposed method reduces the prediction error and is improves large horizons predictions, thus reducing the energy consumption of the sensor network. es
dc.language.iso eng es
dc.publisher Springer Nature es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject Gaussian process es
dc.subject Time series es
dc.subject Sensor networks es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Prediction of time series using wavelet Gaussian process for wireless sensor networks es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Unidad Académica Profesional Nezahualcóyotl es
dc.ambito Nacional es
dc.cve.CenCos 31101 es
dc.cve.progEstudios 42 es
dc.audience students es
dc.audience researchers es
dc.type.conacyt article
dc.identificator 7
dc.relation.doi https://doi.org/10.1007/s11276-020-02250-1


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Prediction of time series using wavelet Gaussian process for wireless sensor networks
  • Autor
  • MEJIA MUÑOZ, JOSE MANUEL
  • Ochoa, Alberto
  • CRUZ MEJIA, OLIVERIO
  • Mederos, Boris
  • Fecha de publicación
  • 2020-01-08
  • Editor
  • Springer Nature
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Gaussian process
  • Time series
  • Sensor networks
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas