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Manuel González-Ronquillo i, Fernando Paz-Pellat h, Hugo Daniel Montelongo-Pérez i, Octavio 
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d Escuela Nacional de Estudios Superiores, León Unit. Universidad Nacional Autónoma de México. C.P. 37000, León, Guanajuato, Mexico 
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H I G H L I G H T S  

• This is the first Tier 2 Inventory for enteric CH4 emissions for Mexico. 
• The inventory is 2039.21 ± 205 Gg CH4 year− 1 (uncertainty = − 18.3 to +21.2. CI = 1666.3–2471.6) for 2018. 
• Our method provides an accurate description of the inventory’s uncertainty. 
• As The accuracy of the inventory increases, the uncertainty expands. 
• Gross energy intake is the primary source of uncertainty.  

A R T I C L E  I N F O   
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A B S T R A C T   

The present work aims to calculate a bottom-up IPCC-Tier 2 inventory for enteric CH4 emissions from cattle in 
Mexico, disaggregate the inventory into different geo-climatic regions to analyze the effect of the contrasting 
climates of Mexico on the inventory and identify the relevant sources of uncertainty associated with the in
ventory. Peer-reviewed country-specific emission factors (EF), activity data (AD) on animal characteristics, 
feeding management, and CH4 conversion factors (Ym) were used in developing the emissions inventory. Monte 
Carlo simulation (MCS) was used to propagate the uncertainty throughout the Tier 2 model (T2model). 
Spearman-ranked correlation analysis (SRCA) was used to identify relevant input parameters (IPAs) for which 
CH4 emissions variables were most sensitive. The estimated inventory for the year 2018 was 2039 Gg CH4 year− 1 

with an uncertainty of − 18.3 % to +21.2 %. The geo-climatic regions had an important influence on the in
ventory because emissions varied among regions, with the dry and tropical sub-humid geo-climatic regions being 
the highest CH4 emitters due to their larger cattle populations and the effect of climate on cattle diets’ quality, 
and in turn, the effect of diet on CH4 emission. The IPAs associated with dry matter intake (DMI) and gross 
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energy intake (GEI) of cattle considerably impacted the uncertainty of enteric CH4 emission estimates. This study 
concludes that implementing a bottom-up Tier 2 approach using disaggregated AD and country-specific EF al
lows a more accurate inventory estimation and assessment of its uncertainty than existing inventories. Future 
efforts to improve the quality of CH4 inventories must focus on improving the accuracy of AD, like DMI, GEI, and 
country-specific EF.   

1. Introduction 

The United Nations Framework Convention on Climate Change 
(UNFCCC), through the 2015 Paris Agreement established the critical 
steps to respond to climate change (UNFCCC, 2015). The first step is to 
limit the global average temperature rise to well below 2 ◦C above 
pre-industrial levels. The most recent report released by the Intergov
ernmental Panel on Climate Change (IPCC) found that human activities 
are increasing greenhouse gas (GHG) emissions to record levels and that 
the world must cut GHG emissions by about 21 % by 2030 and 35 % by 
2035 to keep warming within 2 ◦C above pre-industrial levels (IPCC, 
2023a,b). Livestock production and rice cultivation are the most sig
nificant contributors to global emissions of non-CO2 greenhouse gases 
like CH4 and N2O, accounting for 54 % of emissions of the agricultural 
sector (EPA, 2012). The annual global CH4 emissions are ~570 million 
tonnes (Mt); this includes emissions from natural sources, around 40 % 
of emissions, and those originating from human activity, the 60 % 
remaining - known as anthropogenic emissions (IEA, 2020). The largest 
source of anthropogenic CH4 emissions is agriculture, responsible for 
around a quarter of the total (145 Mt CH4 or 3.62 Gt CO2 eq− 1), closely 
followed by the energy sector, which includes emissions from coal, oil, 
natural gas and biofuels (IEA, 2020). Globally, cattle production systems 
dominate the agricultural sector CH4 emissions with 64–78 % (2.3–2.8 
Gt CO2 eq− 1) (Herrero et al., 2016). However, these figures have 
considerable uncertainty depending on the study; for example, accord
ing to Beauchemin et al. (2008), CH4 emissions from domestic rumi
nants account for ~28 % of the global anthropogenic emissions of this 
gas (~2.8 Gt CO2 eq− 1), which is close to the figure reported by Herrero 
et al. (2016) but for cattle alone. During the UNFCCC 26th Conference of 
the Parties (COP26), the participating countries agreed to reduce 
anthropogenic CH4 emissions by 30 % by 2030, compared with 2020 
levels (UNEP, 2021), including cattle emissions. So, there is a need to 
generate more accurate and less uncertain national inventories to help 
design appropriate public policies to reduce CH4 emissions from cattle 
production globally. Reducing CH4 emissions from cattle initially re
quires an accurate estimation of the inventory of this GHG and its 
associated uncertainty. To estimate national enteric CH4 emissions in
ventories, the IPCC proposes three “tiers” of complexity. Tier 1 is the 
most straightforward but the least accurate method. The Tier 2 approach 
is more accurate as it disaggregates the activity data (AD) and uses 
country-specific emission factors (EF). The Tier 3 method uses complex 
rumen kinetics models and highly disaggregated AD (Cersosimo and 
Wright, 2015). Only a few countries have developed Tier 3 inventories; 
for example, France proposed a new methodology to improve the French 
inventory’s accuracy, which complies with IPCC (2014) rules for the 
Tier 3 method (Eugène et al., 2018). Thus, the estimations of the na
tional inventories of CH4 will always have a certain level of uncertainty. 
Non-CO2 GHG emissions, like CH4, originate from diverse sources and 
are much more uncertain to estimate than CO2 emissions. The level of 
uncertainty of CH4 inventories is of the order of 30 % or more, whereas 
for CO2, this is only about ±5 % to ±10 % (PBL, 2020). Quantifying 
uncertainty is critical for describing and attributing effects derived from 
GHG emissions and climate change (Katz et al., 2013). Uncertainty re
fers to a lack of knowledge regarding the actual value of a quantity (Frey 
and Cullen, 1995). Therefore, the level of uncertainty in CH4 emissions 
inventories depends on the level of the analyst’s knowledge, the quality 
and quantity of AD, the parameters’ uncertainty, and the understanding 
of the underlying process and inference methods (Tong et al., 2012). 

Emissions inventories are an essential input to air quality models and an 
important tool for policymakers to track progress towards mitigation 
targets and guide in defining the most cost-effective mitigation strate
gies and use in international treating reporting to the UNFCCC (Beau
chemin and McGinn, 2005). Moreover, accurate calculations of national 
GHG inventories and the associated uncertainty are important to 
demonstrate that countries are taking action to meet their national 
climate targets under the Paris Agreement. Several approaches have 
been used to quantify how the uncertainty in the model inputs propa
gates throughout the model’s output (Milne et al., 2014). The uncer
tainty and its propagation can be calculated using classical statistical 
methods, expert judgment and IPCC guidelines. However, when the 
assumption of normality of distribution of the AD is violated, the sample 
size is small, or when the relative range of uncertainty or standard de
viation of the mean is large, like in inventory calculation for enteric CH4 
emissions from cattle, a non-parametric but computationally intensive 
method like bootstrapping (BOS) can be used to calculate the uncer
tainty of the relevant input parameters (IPAs) (Tong et al., 2012). In 
addition to BOS, Monte Carlo simulation (MCS) can be a valuable tool to 
assess the IPAs propagation through the model because it evaluates 
dependencies between IPAs and is more flexible than other methods. So, 
combining BOS and MCS can help to deal with complex CH4 inventories 
calculation because production of this gas in the animal is affected by 
numerous sources of uncertainty including: animal characteristics, such 
as body weight, DMI, which is the primary variable determining the 
amount of enteric CH4 produced by cattle (Castelán-Ortega et al., 2020), 
the chemical composition of the diet (Sejian et al., 2011), the diet’s 
forage-to-concentrate ratio, the source of forage (Beauchemin and 
McGinn, 2005), cell walls content in forage plants, presence of plant’s 
secondary metabolites known to possess anti-methanogenic properties, 
the digestibility of the diet (Benaouda et al., 2020). Moreover, regional 
differences in climate, temperature, rainfall, solar radiation, and nutri
ents are also associated with the variability in CH4 inventories within a 
country because of their effects on plants’ growth physiology. Thus, 
tropical regions are usually associated with taller, less nutritious, and 
fast-growing C4 grasses, which result in low digestibility, reduced DMI, 
high CH4 yield (g CH4 kg-1 DMI) and low daily emission (Thompson and 
Rowntree, 2020). In contrast, the greater nutritive value of C3 grasses 
native to temperate climate regions of the world is linked to higher di
gestibility and DMI (Lee et al., 2017), resulting in lower CH4 yield (Moe 
and Tyrrell, 1979) but higher daily emission head− 1. Therefore, in
ventory calculation is challenging in countries where cattle production 
systems occur under different geo-climatic regions that range from 
tropical forests to arid and semi-arid regions. So, there is a considerable 
opportunity to improve CH4 inventories if appropriate uncertainty 
analysis tools and geo-climatic region-specific information on EF, DMI, 
diets’ digestibility and CH4 conversion factor (Ym) are used in countries 
with contrasting climates and heterogeneous cattle production systems 
(Castelán-Ortega et al., 2020). However, none has conducted a Tier 2 
inventory that includes all these sources of uncertainty. The livestock 
sector is Mexico’s second largest anthropogenic source of CH4 emissions, 
just behind the energy sector (SEMARNAT-INECC, 2018). Likewise, it is 
worth noting that all the previous official inventories for enteric CH4 
cattle emissions reported by the Mexican Ministry for the Environment 
(SEMARNAT) and the National Institute for Ecology and Climate Change 
(INECC) have been elaborated using the Tier 1 approach (SEM
ARNAT-INE, 2006). Furthermore, these inventories were associated 
with an inappropriate uncertainty assessment and the use of default 

J.C. Angeles-Hernandez et al.                                                                                                                                                                                                                



Atmospheric Environment 322 (2024) 120389

3

uncertainty values defined by IPCC (2014). The approach used by 
SEMARNAT-INECC (2018) in Mexico to deal with uncertainty neither 
accounts for the lack of knowledge on CH4 EF nor identifies potential 
sources of uncertainty from the AD, as recently pointed out by the 
UNFCCC concerning Mexico’s last communication (UNFCCC, 2019). 
The present work aims to calculate a bottom-up IPCC-Tier 2 inventory 
for enteric CH4 emissions from cattle in Mexico, disaggregate the in
ventory into the different geo-climatic regions to analyze the effect of 
the contrasting climates of Mexico on the inventory and identify the 
relevant sources of uncertainty associated with the inventory. 

2. Materials and methods 

The methodological approach used consisted of 1) geo-spatial 
disaggregation of the cattle population, 2) categorization of Mexico’s 
cattle population and national survey application, 3) uncertainty anal
ysis, 4) uncertainty propagation, and 5) sensitivity analysis. We used the 
Ym obtained from experiments conducted in open-circuit respiration 
chambers (OCRC) by our group (Arceo-Castillo et al., 2019; Canul-Solís 
et al., 2017; Castelán-Ortega et al., 2020; Hernández-Pineda et al., 2018; 
Ku-Vera et al., 2018; Valencia Salazar et al., 2018; Vázquez-Carrillo 
et al., 2020; Vázquez-Carrillo et al., 2021). We also used country-specific 
AD for Mexico on animal characteristics, feeding management and cattle 
population obtained from the literature and a national survey. We were 
aware that the T2model does not reflect all the complex interactions 
between the animal and the plants in the pastures, particularly in 
grazing systems, where DMI is strongly influenced by the sward 

structure and digestibility of the forage (Silva et al., 2013). However, 
this and other problems of the T2model were also acknowledged, as 
points for improvement, by the IPCC (2014) and its refined version 
(IPCC, 2019), but not solved until now. Developing a Tier 3 inventory 
that incorporates complex animal-plant interactions was not an option 
for us because of the lack of simulation models appropriate for Mexico. 

2.1. Geo-spatial disaggregation of the cattle population 

The geo-spatial disaggregation was conducted to analyze the effect of 
the contrasting geo-climatic regions of Mexico on enteric CH4 emissions 
from cattle, as in Castelán-Ortega et al. (2014). We used geographical 
information systems (GIS) mapping tools consisted of dividing Mexico’s 
territory into five geo-climatic regions using the Köppen climate clas
sification (as in Chen and Chen, 2013): Dry (BS), Very Dry (BWh), 
Temperate (C), Tropical Humid (Am) and Tropical Sub-Humid regions 
(Aw); and then allocating the national cattle population of ~34.2 
million heads for the year 2018 to each geo-climatic region (depending 
on their actual location), as shown in Fig. 1. The information used to 
conduct the geo-spatial disaggregation was obtained from the National 
Institute for Statistics and Geography (INEGI) and the National Water 
Commission (CNA), (CONAGUA., 2022). To determine the cattle num
ber for each geo-climatic region, we used the cattle population in every 
one of the 2469 municipalities of Mexico and the individual munici
pality geographic location within one of the five geo-climatic regions. 
This information was captured in the GIS for analysis, which included 
calculating the geo-climatic region population obtained by adding the 

Fig. 1. Distribution of the Mexican cattle population disaggregated by categories in the five geo-climatic regions used for developing the national inventory for 
enteric methane emissions from cattle. 
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number of cattle heads in each municipality within a geoclimatic region. 
Fig. 1 shows the result of the approach used, and a detailed description 
of this process can be found in Castelán-Ortega and Ku-Vera (2019). 

2.2. Categorization of Mexico’s cattle population and national survey 
application 

According to IPCC (2014), the stratification of the cattle population 
of a country into categories and sub-categories is necessary to conduct a 
Tier 2 national inventory. The categorization utilized in the present 
work was based on the classification used by the National Cattle Registry 
of Mexico (NCR) (SADER-SINIIGA, 2021) and the 2007 National Agri
cultural Census (INEGI, 2007). Thus, the Mexican cattle population of 
34, 231, 567 heads was divided into nine categories: calves, young 
steers, young heifers, steer, heifers, dairy cows, beef cows, dual-purpose 
cows, and bulls (Fig. 1). By cows, we mean the mature female of cattle. 
The national survey consisted of 384 questionnaires proportionally 
applied to cattle farmers of the five geo-climatic regions shown in Fig. 1. 
Information on AD, such as cattle’s productive purpose (milk, beef, and 
dual-purpose), milk yield, milk composition, daily body weight gain, 
herd size and herd structure in terms of the number of animals in each 
category, feeding systems (grazing, feedlot, cut and carry), dietary in
gredients composition, DMI, concentrate supplementation, types of 
supplements inherent to each sub-category within the five geo-climatic 
regions, was collected. 

The data was captured in an Excel database and analyzed using R 
codes developed for all analyses conducted in the present work. The 
mean, standard deviation and 95 % confidence intervals (CI) of each AD 
parameter used as an IPAs for the T2model were computed, and the 
output variables obtained were: daily net energy requirements 
(DNEreq), gross energy intake (GEI), DMI, among others, as shown in 
Table 1. 

Typical diets for each geo-climatic region and cattle category were 
formulated using survey data on common feed ingredients, their inclu
sion levels, and specific cattle characteristics by geo-climatic region. A 
detailed description of the procedure to develop the diets can be found 
in Castelán-Ortega and Ku-Vera (2019). Subsequently, the diets were 
used in experiments conducted in OCRC to generate specific Ym and EF, 
as described in (Castelán-Ortega et al., 2018). 

All Ym and EF were peer-reviewed before their use in the inventory. 
For example, the Ym factors for the Tropical Humid and Tropical Sub- 
Humid geo-climatic regions were taken from Canul-Solís et al. (2017), 
Piñeiro-Vázquez et al. (2017), Ku-Vera et al., 2018, Valencia Salazar 
et al. (2018), Arceo-Castillo et al. (2019). Similarly, the Ym factors for 
the Temperate, Dry and Very Dry regions were taken from Cas
telán-Ortega et al. (2018), Benaouda et al. (2020), Castelán-Ortega et al. 
(2020), Vázquez-Carrillo et al. (2020). The Ym factors for the Temperate 
region were published in Vázquez-Carrillo et al. (2021). 

2.3. Uncertainty analysis 

The equations shown in Table 1 were used to calculate the GEI for an 
average animal from each cattle category within geo-climatic regions. 
This set of equations is hereinafter referred to as the T2model. To 
compute the specific CH4 EF to each geo-climatic region, the GEI was 
multiplied by the corresponding Ym factor in each animal category (Eq. 
10.21; IPCC, 2014). A frequentist approach, based on empirical data, 
was used to make inferences for parameters of the distribution of the 
T2model inputs and assess propagation’s effect on the IPAs’ uncertainty. 
Thus, the uncertainty calculation comprised 1) a calculation of the un
certainty of the IPAs for the T2model; and 2) a calculation of the un
certainty of the IPCC (2014) T2model itself (Table 1). 

2.3.1. Calculation of the uncertainty of the IPAs for the T2mode 
This phase is comprised of a) Quantification of the variability of the 

activity and emissions data used as input to the T2model, b) choice of 

Table 1 
Input and output parameters used in the main method of the Tier 2 approach to 
calculate the inventory for enteric CH4 emissions from cattle in Mexico.  

Output variable IPCC, 
2014 
equation 

Input 
parameters 

Source 

Coefficient for calculating 
NEm (Cfi) 

10.2 Winter 
temperature 
(◦C) 

(CONAGUA., 2022) 

Net energy requirements 
for maintenance (NEm) 

10.3  Eq. 10.2 (IPCC, 
2014)   

Body weight 
(kg) 

Survey 

Net energy for activity 
(NEa) 

10.4 NEm Eq. 10.3 (IPCC, 
2014) 

Net energy for growth 
(NEg) 

10.6 Live weight 
(kg) 

Survey and 
scientific literature 

Mature live 
weight (kg) 
Average daily 
weight gain 
(kg) 

Net energy for lactation 
(NEl) 

10.8 Daily milk yield 
(kg d− 1) 

Survey 

Milk fat content 
(%) 

Scientific literature 

Net energy for pregnancy 
(NEp) 

10.13 NEm Eq. 10.3 (IPCC, 
2014) 

Ratio of net energy 
available in a diet for 
maintenance to 
digestible energy 
consumed (REM) 

10.14 Digestible 
energy (%) 

Experimental assays 
in OCRC 

Ratio of net energy 
available for growth in 
a diet to digestible 
energy consumed 
(REG) 

10.15 Digestible 
energy (%) 

Experimental assays 
in OCRC 

Gross energy 
requirements (GEI) 

10.16 NEm Eq. 10.3 (IPCC, 
2014) 

NEa Eq. 10.4 (IPCC, 
2014) 

NEg Eq. 10.6 (IPCC, 
2014) 

NEl Eq. 10.8 (IPCC, 
2014) 

NEp Eq. 10.13 (IPCC, 
2014) 

REM Eq. 10.14 (IPCC, 
2014) 

REG Eq. 10.15 (IPCC, 
2014) 

Digestibility of 
energy 

Experimental assays 
in OCRC 

Dry matter intake (DMI)a 10.18 b Body weight 
(kg) 

Experimental assays 
in OCRC 

Digestibility 
energy 

Emission factor for each 
cattle category within a 
geo-climatic region (kg 
CH4 head− 1 year− 1)b 

10.21 GEI Eq. 10.16 (IPCC, 
2014) 

CH4 conversion 
factor (Ym) 

Experimental assays 
in OCRC 

CH4 emissions from a 
cattle category within a 
geo-climatic region (Gg 
CH4 yr− 1) 

10.19 Emission factor Eq. 10.21 (IPCC, 
2014) 

Number of 
heads 

INEGI, 2007;  
SADER-SINIIGA, 
2021 

Inventory (Gg CH4 yr− 1) 10.20 CH4 category Eq. 10.19 (IPCC, 
2014)  

a Equation used in tropical and sub-tropical geo-climatic regions that showed 
fed rations with low digestibility (45–55 %). 

b Canul-Solís et al. (2017), Castelán-Ortega et al. (2018), Arceo-Castillo et al. 
(2019), Castelán-Ortega et al. (2020), Ku-Vera et al. (2018), Vázquez-Carrillo 
et al. (2020), Vázquez-Carrillo et al. (2021). 
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the appropriate probability density function (PDF), and c) Assessment of 
the uncertainty of the T2model IPAs according to their PDF. The most 
suitable PDFs were selected using graphical and statistical techniques. 
The selected PDF of the IPAs was used to estimate the coverage factor 
and expanded uncertainty using MCS analysis (JCGM, 2008a).  

a) Quantification of the variability of the activity and emissions data 
used as input to the T2model: survey data, AD and data from ex
periments in OCRC were subjected to a depuration process, which 
consisted of the identification and management of outliers and 
missing values. Next, the median was used as a measure of the central 
trend because it is less sensitive to the presence of outliers (Kwak and 
Kim, 2017). The outliers were treated using a specific function 
developed in the R software (R Core Team, 2017) to carry out a 
random imputation of identified outliers to avoid introducing bias in 
the results.  

b) Choice of the appropriate probability density function (PDF): First, 
empirical and cumulative distributions were plotted, which, together 
with descriptive statistics, helped to choose a candidate PDF that 
describes a set of likely parametric distributions. Skewness-kurtosis 
plots, as in Cullen and Frey (1999), were performed and helped to 
select the PDF that best fitted empirical data. Also, skewness and 
kurtosis values were plotted from the empirical data set’s bootstrap 
samples (106 simulations).  

c) Assessment of the uncertainty of the T2model IPAs according to their 
PDF: once the PDF was chosen for each IPAs, a parametric bootstrap 
approach was used to estimate their expected value, standard devi
ation, and 95 % CI as in Tong et al. (2012). Parametric bootstrap is a 
data-based simulation method for statistical inference where 
resamples of size n are randomly drawn from the selected PDF 
(Hesterberg, 2014). Out of these new sets of data, the CIs were 
calculated. Thus, 104 bootstraps resamples were considered appro
priate, as in Tong et al. (2012). The uncertainty expressed as 95 % CI 
(bootstrapped) is hereinafter referred to as “expanded uncertainty” 
(JCGM, 2008b) and was expressed as a percentage (IPCC, 2014). For 
the AD of cattle population, neither the NCR nor the Livestock Census 
specifies the uncertainty associated with their estimates for the size 
of the Mexican cattle population. Therefore, a standard uncertainty 
of ±30 % was assumed across all categories in the five geo-climatic 
zones, which is within the range of the recommended uncertainty 
for a livestock population (IPCC, 2014). 

2.3.2. Calculation of the uncertainty associated with the IPCC (2014) 
T2model 

In this phase, we propagated the uncertainty of the IPAs and applied 
the sensitivity analysis to identify those IPAs that strongly influenced the 
uncertainty of the T2model. Thus, the mean and standard deviation of 
EF and AD were used as inputs to the T2model, while the MCS was used 
in the error propagation process to obtain the uncertainty of the enteric 
CH4 estimations. The sensitivity analysis was conducted using the SRCA, 
which identified the principal IPAs that affected most the uncertainty of 
the CH4 emission from the cattle. In the present work, we defined the 
uncertainty of the T2model as the uncertainty due to the combined ef
fects of uncertainty of the model, IPAs, plus the uncertainty introduced 
by the model’s structure itself (Frey and Cullen, 1995). Thus, the 
model’s uncertainty was evaluated by propagating the bootstrap esti
mates across all the equations of the T2model. As shown in Table 1, the 
Tier 2 method estimates emissions of enteric CH4 using the net energy 
system proposed by the National Research Council (NRC, 1984, 2001). 
This system uses a factorial approach by adding up the net energy re
quirements for maintenance, growth, lactation, pregnancy, activity and 
work using the equations and IPAs shown in Table 1. Similarly, the 
energy supplied by the typical diets from each geo-climatic region was 
assessed for uncertainty using their digestibility as the main attribute 
that describes the nutritional quality (Castelán-Ortega et al., 2018). 

2.4. T2model’s uncertainty propagation 

The MCS technique (Hammersley and Handscomb, 1975; Lewis and 
Orav, 1989) quantified how the uncertainty of the IPAs and output 
variables propagated throughout the T2model because it can deal with 
complex models. The uncertainty propagation analysis aimed to deter
mine the uncertainty in the output variables U (.), given the operations 
or equations g and the uncertainties in the IPAs Ai (.) (Heuvelink, 1998), 
as shown in Equation (1):  

U(.) = g(A1(.), …, Am(.))                                                                  (1) 

Where U (.) is an output variable of the T2model’s equation g (.) on the m 
input parameter Ai (.). 

The IPAs were considered random variables and were described by 
their PDF. The T2model′s equations were run 106 times to obtain a set of 
output variables’ values, which formed the probability distribution that 
described the IPAs’ uncertainty. The uncertainty propagation analysis 
was conducted using the Propagate Package (Spiess, 2018) in R software 
throughout MCS; Taylor’s first and second derivatives were also calcu
lated. With a priori number of simulations defined, an adaptive meth
odology was carried out by increasing the number of simulations until 
reaching the stabilization of the values of the uncertainty of estimated 
output variables. 

2.5. Sensitivity analysis 

Spearman ranked correlation analysis (SRCA) was used to assess the 
sensitivity of the CH4 EFs and the entire inventory to the uncertainty of 
the IPAs. The SRCA measures the strength of the association between the 
output variables of the T2model and their IPAs. Firstly, we calculated 
the SCRA between the CH4 inventory and the IPAs of the T2model. 
Secondly, we calculated the SRCA between the IPAs of the T2model and 
the EF (kg CH4 head− 1 year− 1) because most of the uncertainty in the 
GHG inventories is primarily caused by the uncertainty associated with 
the EFs (Milne et al., 2014). Accordingly, we selected five IPAs with the 
highest association level with their respective EF. We then replaced the 
previously used IPAs with the new IPAs in the T2model and reran the 
model, but this time with half of the value of the standard deviation in 
order to identify the effect of reducing the input’s uncertainty on the 
emission factor. 

3. Results 

3.1. Activity data 

The cattle population of 34.2 million heads segregated by geo- 
climatic region, category and sub-category is shown in Table 2. It can 
be observed that the Mexican cattle herd is not heterogeneously 
distributed across the geo-climatic regions of the country. The largest 
population is located in the Tropical Sub-Humid region with 11.5 
million heads, followed by the Dry climate region with 8.0 million 
heads. The smallest population is located in the Very Dry climate region. 
Cows (dairy, beef and dual-purpose) were the predominant categories in 
all geo-climatic regions with a population of 18.8 million heads, which 
represent ~ 55 % of total cattle inventory. 

3.2. Enteric fermentation CH4 emissions Tier 2 inventory 

The inventory of CH4 emissions from enteric fermentation of cattle 
was 2039 ± 205 Gg CH4 year− 1 (CI = 1666–2471) with an associated 
uncertainty of − 18.2 % to +21.2 %. Fig. 2 shows the empirical distri
bution of the inventory, the mean emission and the 95 % CI. It can be 
observed that the empirical distribution is slightly skewed to the left due 
to the skewness shown by the EFs. Tables TA1 to TA5 in the Appendix 
show the PDF and their parameters, mean, standard deviation, 95 % CI 
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and uncertainty of all IPAs used in the T2model for all cattle categories 
and geo-climatic regions, which were not included here due to space 
restrictions. 

Fig. 3 shows the inventory for all geo-climatic regions of Mexico, and 
it can be observed that the Dry region is the main enteric CH4 emitter 
with 607.2 Gg CH4 year− 1. The second-largest emission was observed in 
the Tropical Sub-Humid region with 526.7 Gg CH4 year− 1, the third- 
largest inventory was observed in the Temperate climate region, and 
the smallest regional inventory was observed in the Very Dry geo- 
climatic region, only 185.9 Gg CH4 year− 1. Fig. 3 also shows differ
ences in the 95 % CI, empirical distributions and spread of CH4 esti
mations among geo-climatic regions. The emissions associated with each 
cattle category from the five geo-climatic regions are summarized in 
Table 3 This table shows the PDF, mean annual CH4 emission, standard 
deviation, 95 % CI and uncertainty. It can be observed that CH4 emission 
by category has several shapes of PDF, like generalized normal, skewed 
normal, and Johnson SU. These tables also show differences in un
certainties between regions and categories associated with various levels 

of uncertainty in the EF. For example, the Dry Climate geo-climatic re
gion has the lowest uncertainty (− 20.5 %, +22.2 %) with a generalized 
normal distribution (Table 3) and a small spread of their estimations 
(Fig. 3). Also, in this region, the lowest uncertainty was observed in the 
young heifer’s category (− 60.9 %,+72.4 %). 

The 95 % CI of the CH4 emissions differed more among the geo- 
climatic regions than among cattle categories within geo-climatic re
gions. The category steers showed the highest uncertainty level in most 
of the regions, except in the Temperate climate region. As shown in 
Table 3, the highest levels of uncertainty occurred in the Tropical Humid 
region with an expected value of 254.4 Gg CH4 year− 1 and 95 % CI that 
ranged from 153.6 to 402.5 Gg CH4 year− 1. Dual-purpose cows and 
steers were the categories that contributed most to the uncertainty. 

3.3. Sensitivity analysis 

Fig. 4 shows the five IPAs, based on the SRCA, that affected most the 
uncertainty of the enteric CH4 emissions. These parameters are GEI, Ym 
factor, milk fat content (MFC), daily milk yield (DMY) and DMI. It can be 
observed that the IPAs associated with the DMI and GEI have the most 
significant impact on the uncertainty on enteric fermentation CH4 
emissions, with values of SRCA of 0.87 and 0.86, respectively. 

4. Discussion 

The present work aimed to calculate a bottom-up IPCC-Tier 2 in
ventory for enteric CH4 emissions from cattle in Mexico, disaggregate 
the inventory among the different Mexican geo-climatic regions to 
analyze the effect of contrasting climates on the inventory and identify 
the relevant sources of uncertainty associated with the inventory. The 
inventory obtained in the present work is 14 % higher than the last 
official inventory of 1790 Gg CH4 year− 1 for the year 2015 reported in 
the 6th National Communication (SEMARNAT-INECC, 2018) to the 
UNFCCC by the Mexican official institutions, SEMARNAT and INECC, 
responsible for communicating the national GHG inventories. But the 
official inventory is similar to the 2300 Gg CH4 year− 1 inventory for 
2013, presented by Wolf et al. (2017) and the 2112 Gg CH4 year− 1 for 
2015, presented by Scarpelli et al. (2020), also for Mexico. However, the 
Scarpelli et al. (2020) inventory includes manure management too. The 

Table 2 
Mexico’s cattle population disaggregated by geo-climatic region, cattle category 
and sub-category for 2018 used for the IPCC (2014) enteric CH4 inventory.  

Category Geo climatic region 

Dry Very Dry Temperate Tropical 
Humid 

Tropical 
Sub-Humid 

Dairy 
cows 

1,257,368 541,047 1,047,499 – – 

Beef cows 2,063,011 770,973 1,135,665 1,795,571 3,578,483 
Dual- 

purpose 
cows 

957,790 315,324 708,868 1,595,340 3,101,697 

Calves 1,348,161 363,766 692,236 299,039 500,567 
Young 

steers 
369,205 106,709 337,516 389,797 825,277 

Young 
heifers 

769,765 288,000 403,875 234,676 225,491 

Steers 166,363 30,257 518,828 673,747 1,414,914 
Heifers 946,316 447,640 146,115 123,137 271,229 
Bulls 221,995 60,180 733,490 864,879 1,589,761 
Total 8,099,974 2,923,896 5,724,092 5,976,186 11,507,419  

Fig. 2. Empirical distribution of the estimated enteric methane emissions inventory from the cattle of Mexico. Key: red lines represent a 95 % confidence interval, 
and the black dashed line is the mean of the enteric methane emission estimations. 
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discrepancy observed between our inventory, and SEMARNAT-INECC 
(2018) inventory can be partly attributed to the minor differences in the 
cattle population used for calculation, 34.2 million vs 33.8 million heads 
of cattle, respectively. However, most of the difference is attributed to 
the method for inventory calculation and the fact that the official in
ventory did not consider the different cattle categories, the productive 
purpose for cows, and their spatial distribution within the geo-climatic 
regions. Furthermore, the official inventory used the default IPCC 
(2014) EFs for non-dairy cattle of 56 kg CH4 year− 1 animal− 1, and 32 
different EFs for dairy cattle, one for each state of the Mexican Republic, 
but the official inventory did not declare where these 32 EFs were taken 
as they are not mentioned in the IPCC (2014) guidelines nor in the na
tional communication. 

The underestimation of the inventories elaborated by SEM
ARNAT-INECC (2018) is also reported by Lu et al. (2021). These authors 
used a Tropospheric Monitoring Instrument (TROPOMI) to map and 
quantify CH4 emissions from eastern Mexico. They found that the offi
cial inventories underestimate the anthropogenic CH4 emissions of the 
oil and gas industry by up to 45 % and by ~21 % from the livestock 
sector. Likewise, Lu et al. (2021) reported an underestimation of 8.6 % 
of the SEMARNAT-INECC (2018) inventory for cattle enteric CH4 
emissions. The INEGI (2007) inventory reported in the 6th National 
Communication to the UNFCCC has an uncertainty of only 4.7 %, which 
is considerably lower than the uncertainty reported in the previous CH4 
inventories from the same institute and that of our study. For instance, 
the 2002 national inventory reported an emission of 1642 Gg of CH4 
with an associated uncertainty of 20 %, as shown in Table 4 (SEM
ARNAT-INE, 2006). However, the reduction in the uncertainty of the 
SEMARNAT-INECC (2018) inventory was not accompanied by an 
improved methodology for inventory calculation because both in
ventories used the Tier 1 method and the Tier 1 error propagation 
method to calculate the uncertainty. In contrast, our results suggest that 
uncertainty increment accompanies an improved inventory because it is 
well known that the Tier 2 and 3 approaches reveal additional 
complexity and critical sources of uncertainty that are not detected in 
the Tier 1 method (IPCC, 2014). Several developing countries also share 
the Tier 1 approach in reporting their official inventories to the 
UNFCCC, which is inadequate when appropriate methodologies and 
facilities are available, like in Mexico. 

Our methodology represents progress in inventory uncertainty 
assessment because it reveals a more realistic understanding of the 
limitations of existing knowledge on enteric CH4 emissions from cattle 
and their effect on inventory uncertainty. Our findings suggest that 
previous and recent approaches underestimated the size of the uncer
tainty of enteric CH4 inventories, for example, Scarpelli et al. (2020) 
reported an uncertainty of only 10 %. In this sense, Katz et al. (2013) 
indicated that the magnitude of the uncertainty of inventories could 
increase when more rigorous approaches to GHG quantification are 
implemented because previously neglected sources of uncertainty are 
recognized and accounted for. Thus, the estimations of the national in
ventories of this gas will always have higher levels of uncertainty 
because CH4 originates from many different sources and is much more 
uncertain than CO2 emissions. The uncertainty of CH4 inventories in a 
country and at a global level is of the order of 30 % or higher, as shown 
in Table 4, (PBL, 2020). So, although we did not reduce the inventory 
uncertainty compared with the official inventories, we obtained a more 
accurate estimate of the uncertainty’s size, similar to that reported by 
(PBL, 2020), and other inventories reported in Table 4. This is explained 
because implementing Tier 2 and Tier 3 methods requires more detailed 
AD, but the resulting inventories are likely more accurate (Clark, 2017). 

Table 4 compares our inventory and its uncertainty with other na
tional inventories, and it can be observed that our inventory’s uncer
tainty level is similar to those inventories using the Tier 2 approach, 
except for the Australian inventory (DEE, 2018), which assessed the 
uncertainty through the Tier 1 error propagation method, assigning an 
uncertainty default value of 51 %. Also, the USA’s inventory developed 
by Hristov et al. (2017) shows a more considerable uncertainty (− 32.0, 
+47.0) than that in the present study. These differences can be explained 
by the different methodologies used to estimate enteric CH4 emissions. 
For instance, Hristov et al. (2017) assumed that DMI was the critical 
factor determining CH4 emissions in their inventory because this vari
able showed significant variability in all cattle categories of the USA 
herd, which can partially explain the higher level of uncertainty of the 
USA inventory. However, independently of the Tier level used to esti
mate inventories, the present study and the national inventories in 
Table 4 showed high uncertainties (>10 %), derived mainly from the 
considerable uncertainty of the AD used, confirming Katz et al. (2013) 
asseveration. Our results also demonstrated that when the AD deviations 

Fig. 3. A pirate plot of estimations of enteric methane emissions from cattle for the five geo-climatic regions of Mexico for 2018. Dots represent the raw data; the red 
horizontal line shows the mean of CH4 emission; the beans represent the empirical probability distribution; and the upper and lower fence lines show the 95 % 
confidence interval. 
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Table 3 
Summary of the average annual enteric CH4 emissions per cattle category and CH4 inventory (Gg year− 1) for the different geo-climate geo-climatic regions of Mexico.  

Category PDF Mean Standard deviation C.I. 95 % (expanded uncertainty) Uncertainty, (% of mean) 

Dry Climate geo-climatic region 
Dairy cows Johnson SU 169.3 65.5 61.1–317.7 − 63.9,+87.6 
Beef cows Johnson SU 196.2 73.5 72.2–358.8 − 63.1,+82.8 
Dual-purpose cows Johnson SU 112.0 41.8 41.3–205.1 − 63.0,+83.0 
Calves Johnson SU 10.3 4.2 3.61–19.9 − 64.9,+93. 
Young steers GN 15.5 7.3 6.1–28.2 − 60.3,+81.3 
Young heifers Johnson SU 31.1 10.5 12.1–53.7 − 60.9,+72.3 
Steers Johnson SU 6.9 3.1 2.1–14.2 − 68.8,+105.1 
Heifers Skewed normal 53.1 19.0 20.08–94.7 − 62.2,+78.2 
Bulls Johnson SU 11.3 4.1 4.1–20.4 − 63.5,+81.3 
Inventory GN 607.2 109.9 482.4–741.9 − 20.5,+22.1 
Very Dry climate geo-climatic region 
Dairy cows GN 84.3 19.0 52.7–127.3 − 37.5,+50.9 
Beef cows GN 41.4 7.3 28.5–57.1 − 31.0,+37.9 
Dual-purpose cows Skewed normal 20.6 3.1 15.1–27.4 − 26.9,+32.7 
Calves GN 1.8 0.6 0.8–3.2 − 52.7,+77.1 
Young steers GN 2.3 0.7 1.1–3.9 − 52.7,+77.1 
Young heifers Johnson SU 8.8 1.9 5.5–13.2 − 37.1,+48.7 
Steers Johnson SU 1.04 0.4 0.4–1.9 − 58.9,+86.4 
Heifers GN 17.1 3.6 10.9–25.0 − 36.3,+45.9 
Bulls Johnson SU 6.2 1.6 3.6–10.1 − 41.7,+60.6 
Inventory Johnson SU 185.9 21.0 149.6–231.9 − 19.5,+24.7 
Temperate climate geo-climatic region 
Dairy cows GN 156.5 92.5 15.6–372.5 − 90.0,+137.9 
Beef cows Johnson SU 78.1 26.9 30.1–135.7 − 61.4,+73.6 
Dual-purpose cows Skewed normal 62.8 21.0 24.7–107.5 − 60.5,+71.2 
Calves GN 15.1 7.4 3.0–31.6 − 80.0,+109.7 
Young steers GN 18.0 8.1 5.6–36.9 − 68.6,+105.2 
Young heifers Johnson SU 26.4 9.7 9.7–47.9 − 63.0,+81.4 
Steers Johnson SU 32.4 11.2 12.0–57.8 − 62.7,+78.5 
Heifers Johnson SU 11.4 4.4 4.1–21.4 − 63.9,+87.1 
Bulls Skewed normal 64.1 21.9 24.6–110.8 − 61.6,+72.7 
Inventory Johnson SU 466.7 104.5 296.4–706.4 − 36.5,+51.3 
Tropical Humid climate region 
Beef cows Johnson SU 51.9 21.8 17.9–103.0 − 65.5,+98.4 
Dual-purpose cows Johnson SU 125.7 56.5 42.0–262.6 − 66.5,+108.8 
Calves GN 5.2 1.9 1.9–9.5 − 63.3,+81.4 
Young steers Skewed normal 8.2 3.0 2.9–14.9 − 63.6,+81.6 
Young heifers Johnson SU 13.0 5.9 4.0–27.1 − 68.7,+108.2 
Steers Johnson SU 8.3 4.2 2.4–18.7 − 71.0,+125.8 
Heifers Johnson SU 32.5 13.6 11.3–64.2 − 65.1,+97.3 
Bulls Johnson SU 8.9 3.9 2.9–18.3 − 66.4,+105.5 
Inventory Johnson SU 254.4 63.6 153.6–402.5 − 39.6 + 58.2 
Tropical Sub-Humid geo-climatic region 
Beef cows Johnson SU 95.5 40.6 33.0–191.2 − 65.4,+100.2 
Dual-purpose cows Johnson SU 279.8 110.6 101.2–532.8 − 63.8,+90.4 
Calves Skewed normal 11.2 3.7 4.6–19.3 − 59.1,+73.3 
Young steers Johnson SU 16.2 6.1 5.9–29.8 − 63.3,+83.6 
Young heifers Johnson SU 27.3 12.4 8.5–56.7 − 68.6,+107.8 
Steers Generalized normal 8.4 4.2 2.0–18.4 − 75.7,+119.4 
Heifers Johnson SU 20.6 9.1 6.8–42.3 − 66.7,+104.8 
Bulls Johnson SU 20.6 9.1 6.8–42.3 − 66.7,+104.8 
Inventory Johnson SU 526.7 122.1 320.7–797.8 − 39.1,+51.4 

PDF = Probability density function, GN= Generalized normal. 

Fig. 4. Tornado plot of main inputs parameters that affect the uncertainty of T2model estimates of enteric fermentation CH4 emissions for cattle in Mexico.  
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become pronounced, the model domain for using the Tier 1 error 
propagation method is not fulfilled. Therefore, using MCS was appro
priately used to deal with CH4 emission inventories that use the Tier 2 
approach. It was also adequate to implement the disaggregation strategy 
because the Tier 2 MCS uncertainty analysis can manage significant 
IPAs’ uncertainties and provide a more detailed and accurate assessment 
of all inherent uncertainties that influence a national inventory (Fauser 
et al., 2011). 

It is well established that categorization of the national cattle pop
ulation reduces the level of uncertainty of CH4 emission inventories 
(IPCC, 2014); unfortunately, no previous Mexican enteric CH4 in
ventories reported the uncertainty obtained using MCS, herd categori
zation nor the use of the Tier 2 method, making it difficult to evaluate if 
the categorization implemented in the present work contributed to 
improving the quality of our inventory. However, based on the other 
national inventories presented in Table 4, the inventories that used a 
detailed categorization of the countries’ cattle population, e.g., the UK, 
New Zealand, Canada and the USA, showed the lowest uncertainty level 
ranging from 11 % to 24 %. These values are similar to our inventory, so 
it is possible to state that our approach reduced the inventory uncer
tainty from a hypothetical large uncertainty. Further uncertainty 
reduction will depend on the availability and quality of AD for Mexico’s 
cattle population. For example, it is necessary to include the physio
logical state of cattle, seasonality, duration of productive stages, and 
annual changes in cattle population associated with exports of calves to 
the USA. It is also essential to integrate the temporality of emissions for 
each category and the development of critical IPAs to Tier 2 or Tier 3 
approaches like the Ym factor and the digestibility information by cattle 
sub-category. 

Our approach also reflected the effect of differences among Mexico’s 
contrasting regions and cattle production systems on inventory size and 

uncertainty. For example, the highest regional inventory observed in the 
Dry climate region (Table 3) is attributed to relatively high Ym factors of 
more than 6.0 for high-yielding dairy cows, the second largest popula
tion of cattle heads of over 8.0 million, a large number of individuals of 
the cows’ category (Fig. 1), and reasonably good quality pastures, 
mostly C3 types of grass like Bouteloua gracilis (Améndola-Massioti et al., 
2005). Cattle intake of good-quality grasses increases daily CH4 emis
sions per animal (Benaouda et al., 2020). On the other hand, the 
second-largest emission observed in the Tropical Sub-Humid region is 
explained by the largest cattle population (Fig. 1) of over 11.5 million 
heads (despite a low Ym factor of 4.64) and low-quality tropical pas
tures, primarily C4 grasses (Améndola-Massioti et al., 2005; Ku-Vera 
et al., 2018). On the other hand, the smallest cattle population in the 
Very Dry geo-climatic region of 2.9 million heads explains the smallest 
regional inventory, only 185.9 Gg CH4 year− 1. In contrast, the 
augmented uncertainty of the inventories observed in Tropical regions 
can be attributed to the high uncertainty of the EFs, which are likely 
affected by the low DMI, rumen degradability and a longer retention 
time of digesta in the rumen of cattle grazing low-quality pastures. This 
results in lower CH4 production day− 1 head− 1 but a high CH4 yield. 
Furthermore, there is a different category of cows in these regions, the 
dual-purpose cows, which are usually not considered in the temperate 
countries’ inventories but constitute the majority of cattle in the world’s 
warmer regions. Dual-purpose cows have larger DMI and CH4 emissions 
than beef cows but lower than dairy cows (Castelán-Ortega and Ku-Vera, 
2019). 

This disaggregation approach aligns with Zhu et al. (2016), who 
pointed out that country and region-specific emission factors can reduce 
the uncertainty in GHG inventories for animal agriculture. Similarly, 
Karimi-Zindashty et al. (2012) found that applying IPCC (2014) default 
parameters, when used at the disaggregated provincial scale, reduced 

Table 4 
Cattle enteric methane emission inventories and their associated uncertainty for several countries with a large cattle population.  

Country Yeara IPCC 
approach 

Herd categorizationb Uncertainty 
approachc 

CH4 annual 
emission (Gg) 

Uncertainty 
range % 

Source 

Mexico 2002 Tier I DC, BC Tier 1-EPM 1642.2 − 20.0, +20.0 (SEMARNAT-INE, 2006) 
Canadad 2008 Tier 2 Scw, Drcw, Mcw, DR, Hfed, YH, Sfed, YS, c, 

Bc, Bcw 
MC 812.0 − 22.0, +24.0g 

− 19.0, +20.0h 
Karimi-Zindashty et al. 
(2012) 

Brazil 2010 NE DC, BC Tier 1-EPM 10,798.4 − 34.0, +34.0i MSTI (2016) 
UK 2010 Tier 2 Dcw, Bcw, DH, BH, DR, Dc, Bc, Bbgc-2, B MC 551.6 − 17.4, +20.4 Milne et al. (2014) 
USA 2012 CH4 yielde Bcw, Dcw, Mcw, Drcw, B, 

DR, DH, BH, H, ST, c 
MC 6.201.0 − 32.0,+40 Hristov et al. (2017) 

Austriaf 2014 Tier 2 DC, SC, YS, Bbgc-2, BH, OT-2 Tier 1-EPM 155.3 − 22.4, +22.4 EAA (2016) 
New 

Zealand 
2015 Tier 2 Dcw, Bcw, DH, YH, MH, B, Bcw, Bbgc-1, 

Bbcg-2, Bbcg-3, BC, YS, BH, BS 
MC 754.5 − 16.0, +16.0 ME (2017) 

Australia 2016 Tier 2 Dcw, YDH, DH, ST, B, Bbgc-1, Bbgc-2, Bbgc-3, 
Bcw, Bc, YS, BS 

Tier 1- EPM 1512.5 − 51.0, +51.0 DEE (2018) 

Canada 2016 Tier 2 Dcw, DH, B, Bcw, BH, ST, c, Hs MC 928.0 − 19.0, +22.0g 

− 16.0, +22.0h 
(ECCC and C.C, 2018) 

Germany 2016 Tier 2, Tier 
3 

Dcw, c, H, B, SC, OT-2 Tier 1-EPM 932.3 − 20.4, +20.4 Haenel et al. (2018) 

USA 2016 Tier 1, Tier 
2 

Dc, Bc, DR, YH, DH, Bc, Bcw, BH, BS, Sfed, 
Hfed, Bbgc-1, Bbgc-2 

MC 6568.0 − 11.0, +18.0 EPA (2012) 

Mexico 2015 Tier 1 NE NE 1790.0 − 4.78, +4.7 SEMARNAT-INECC, 2018 
Mexico 2017 Tier 2 Dcw, Bcw, DPcw, c, YH, YS, ST, H, B MC, Bootstrap 2039.2 − 18.3, +21.2 This study  

a Year of CH4 inventory according to available activity data of cattle population. 
b Dairy cattle (DC); beef cattle (BC); dairy cows (Dcw); beef cows (Bcw); dual-purpose cows (DPcw); suckling cows (Scw); dry cows (Drcw); milking cows (Mcw); 

dairy replacements (DR); calves (c); dairy calves (Dc); beef calves (Bc); young heifers (YH); milking heifers (MH); young steers (YS); heifers (H); heifer for slaughter 
(Hs); dairy heifers (DH); young dairy heifer (YDH); beef heifers (BH); steers (ST); beef steers (BS); bulls (B); beef breeding growing cows 0–1 year (Bbgc-1); beef 
breeding growing cows 1–2 years (Bbgc-2); beef breeding growing cows 2–3 years (Bbgc-3); Steers feedlot (Sfed); heifers feedlot (Hfed); other cattle >2 years (OT-2). 

c Monte Carlos simulation (MC); bootstrap simulation (Bootstrap); Tier 1 error propagation method (Tier 1-EPM); not specified (NE). 
d Aditionally this inventory divided all the cow’s categories into pregnant and non-pregnant. 
e Enteric methane emissions were calculated as follows: CH4 emission from enteric fermentation (Gg yr− 1) = cattle category-specific feed dry matter intake (DMI; kg 

head− 1 d− 1) × cattle category-specific methane emission factor (g kg− 1 DMI) × 365 (d yr− 1) × county cattle population by category (head). 
f This inventory disaggregates cattle CH4 emissions by type of farming (conventional and organic). 
g Non-dairy cattle. 
h Dairy cattle. 
i Beef cattle. 

J.C. Angeles-Hernandez et al.                                                                                                                                                                                                                



Atmospheric Environment 322 (2024) 120389

10

the overall uncertainty of the Canadian enteric fermentation CH4 
emissions inventory. Thus, the spatial distribution of the CH4 emissions 
allowed us to assess specific geo-climatic regions that are likely to be 
more significant CH4 emitters (Tropical Sub-Humid and Dry climate 
regions) and identify suitable mitigation strategies for each region 
(Piñeiro-Vázquez et al., 2017, Hernández-Pineda et al., 2018; 
Vázquez-Carrillo et al., 2020, Ku-Vera et al., 2018). The spatial distri
bution of the cattle population also provided a valuable guide to iden
tifying potential locations for monitoring CH4 emissions by comparing 
bottom-up CH4 with top-down inventories to determine the relevance of 
AD and emission data used in the inventory. We also demonstrated that 
spatial disaggregation of the inventory data is a way to improve data 
quality and provide guidelines for identifying the most cost-effective 
approach for reducing uncertainty, as in Bun et al. (2010). 

In this geo-climatic region of Mexico, smallholder and highly 
intensive cattle farming systems coexist (Castelán-Ortega et al., 2003, 
2017). Thus, the high farm variability resulted in more considerable 
uncertainties for BW, DMI and DMY (Appendix). The histogram in Fig. 2 
and pirate plot in Fig. 3 showed skewness to the left in the CH4 emissions 
for the total inventory and the five geo-climatic regions, respectively, 
which determined the asymmetry of 95 % CI. These findings indicate 
that skewness of the IPAs propagated throughout the T2model (Ap
pendix), which can lead to skewness in the uncertainty estimate of the 
expected value of CH4 emissions. Therefore, the quality of AD is essen
tial to get a good inventory. The skewness of the empirical distribution 
of the current CH4 inventory and the asymmetry of 95 % CIs are in line 
with national inventories that used Tier 2 approach and MCS analysis to 
estimate CH4 emissions and assess their uncertainty, respectively (ECCC 
and C.C, 2018; EPA, 2012; Hristov et al., 2017; Karimi-Zindashty et al., 
2012; Milne et al., 2014), as shown inTable 4. However, an essential 
difference of the present study compared to CH4 inventories in Table 4 is 
the use of bootstrap simulation to estimate the 95 % CI of IPAs, EFs and 
CH4 inventory estimates. Bootstrap simulation has been used to quantify 
emission factors’ uncertainty for censored data sets and applied to air 
toxic emissions (Zhao and Frey, 2004). However, few published in
ventories used bootstrap simulation to characterize the uncertainty of 
enteric fermentation CH4 emissions from cattle. The bootstrap simula
tion was instrumental in the present study because most IPAs showed a 
certain level of skewness (Appendix). The primary assumption of boot
strap simulation is that the probability distribution estimated from the 
raw sample data best estimates the actual but unknown population 
distribution. Unfortunately, acquiring a larger sample size of 
regional-specific AD on Ym factors and feed digestibility to calculate EFs 
is complex due to technical and economic issues, e.g., the small number 
of laboratories with OCRC to measure CH4 emissions in developing 
countries. Therefore, bootstrap simulation is an option to reduce the 
estimated bias from limited emission data (Tong et al., 2012). 

Furthermore, as one of the primary sources of uncertainty in our 
inventory was that associated with the Efs (Ym), it is necessary to focus 
future research on minimizing the uncertainty of EFs (Wójcik-Gront and 
Gront, 2014). For example, the largest inventory levels of uncertainty 
observed in steers from Tropical climate regions implies that the infor
mation available to estimate CH4 in this sub-category is less accurate. 
Therefore, future efforts should be directed toward generating more 
robust empirical EFs through specific experiments in these regions of 
Mexico. It was also evident that EFs’ uncertainty was also derived from 
the propagation of the IPAs’ uncertainty throughout the T2model. For 
this reason, we calculated the rank correlation coefficients between the 
EFs and IPAs as part of the sensitivity analysis. Similarly, GEI, DMI and 
daily milk yield greatly influenced uncertainty because these variables 
varies greatly across regions (see Appendix). This means that when we 
calculate and inventory we need to pay particular attention to the cows’ 
category and the milk yield variable because it can be an important 
source of variation that needs to be considered. 

Finally, Table 5 compares the mean Ym factors and their associated 
uncertainty disaggregated by geo-climatic region and cattle category 

used in the present study and the default Ym factors proposed by IPCC 
(2023b). The Ym factors’ uncertainties in this table indicate that the 
current uncertainty of 5 % of the official Mexican inventory was 
underestimated because all uncertainties used in the present work and 
default values of the IPCC are above 5 % and 15 %, respectively. 
Furthermore, in Canada, Karimi-Zindashty et al. (2012) demonstrated 
that a large proportion of the uncertainty of their GHG inventory was 
associated with the use of globally applied IPCC (2014) default Ym 
values. The small uncertainty of our Ym factors compared to the IPCC 
(2014) factors is explained by the lower uncertainty achieved through ex 
professo experiments because IPCC recommends a Ym = 6.5 ± 1.0 % 
(uncertainty − 15.3 %, +15.3 %) for all categories of cattle, which are 
not in feedlots, and Ym = 3.0 ± 1.0 % (uncertainty − 33.3 %,+33.3 %) 
for feedlot cattle, as shown in Table 5. 

Similarly, Hristov et al. (2018) demonstrated that using a constant 
value for the Ym factor is a major concern because the Ym factor can 

Table 5 
Comparison between the mean Ym factors and their associated uncertainty 
disaggregated by geo-climatic region and cattle category used in the present 
study and the default Ym factors proposed by (IPCC, 2006).  

Zone Categories Ex-profeso 
experiments 

(IPCC, 2006) 
guidelines 

Mean Uncertaintya Mean Uncertainty, 
%a 

Very dry Dcw 6.0 − 5.9, +5.9 6.5 − 15.3, 
+15.3 

Very dry Bcw, DPcw, 
c, YH, H, S 

4.4 − 11.6,+12.3 3.0 − 33.3,+33.3 

Very dry YS 3.5 − 5.7,+5.0 3.0 − 33.3,+33.3 
Very dry B 6.4 − 6.4,+6.2 6.5 − 15.3, 

+15.3 
Dry Dcw 6.0 − 5.9,+5.9 6.5 − 15.3, 

+15.3 
Dry Bcw, DPcow 6.2 − 7.8,+7.5 6.5 − 15.3, 

+15.3 
Dry YH, YS, c 5.7 − 2.6,+2.6 6.5 − 15.3, 

+15.3 
Dry H 5.9 − 8.2,+8.0 6.5 − 15.3, 

+15.3 
Dry S 4.3 − 4.0,+4.5 3.0 − 33.3,+33.3 
Dry B 5.6 − 5.3,+5.6 6.5 − 15.3, 

+15.3 
Temperate Dcw 8.3 − 15.8,+15.9 6.5 − 15.3, 

+15.3 
Temperate Bcw, DPcow, 

YH, YS, ST, B 
6.2 − 3.7,+3.7 6.5 − 15.3, 

+15.3 
Temperate Calves 6.2 − 2.4,+2.1 6.5 − 15.3, 

+15.3 
Temperate Heifers 7.9 − 16.0,+13.0 6.5 − 15.3, 

+15.3 
Tropical 

humid and 
sub-humid 

Bcw, DPcow, 
B, H 

4.6 − 6.3,+6.4 6.5 − 15.3, 
+15.3 

Tropical 
humid and 
sub-humid 

C, YS, 4.7 − 0.2,+0.2 6.5 − 15.3, 
+15.3 

Tropical 
humid and 
sub-humid 

YH 5.4 − 27.8,+38.0 6.5 − 15.3, 
+15.3 

Tropical 
humid and 
sub-humid 

S 4.2 − 9.8,+9.8 3.0 − 33.3,+33.3  

a Uncertanty expressed as a percentage. Dairy cows (Dcw); beef cows (Bcw); 
dual-purpose cows (DPcw); suckling cows (Scw); dry cows (Drcw); milking cows 
(Mcw); dairy replacements (DR); calves (c); dairy calves (Dc); beef calves (Bc); 
young heifers (YH); milking heifers (MH); young steers (YS); heifers (H); heifer 
for slaughter (Hs); dairy heifers (DH); young dairy heifer (YDH); beef heifers 
(BH); steers (ST); beef steers (BS); bulls (B); beef breeding growing cows 0–1 
year (Bbgc-1); beef breeding growing cows 1–2 years (Bbgc-2); beef breeding 
growing cows 2–3 years (Bbgc-3); Steers feedlot (Sfed); heifers feedlot (Hfed); 
other cattle >2 years (OT-2). 
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show considerable variation due to factors such as feed quality, pro
duction level, DM digestibility, etc. Therefore, using one or two default 
Ym factors can result in significant uncertainty in CH4 emissions esti
mates in countries like Mexico, with several geo-climatic regions and 
contrasting cattle production systems (Table 5). The sensitivity analysis 
allowed us to identify IPAs that strongly affected the uncertainty in our 
inventory; for example, the diet’s Ym factor, GEI, DMI, DMY, and feed 
digestibility were crucial IPAs that affected the uncertainty of the EFs for 
cows and young animals. Therefore, special attention must be placed on 
these IPAs for future inventory preparation. Furthermore, our method 
explains the current inventory’s critical sources of uncertainty with 
similar sources in other inventories that implemented the Tier 2 
approach (Karimi-Zindashty et al., 2012; Milne et al., 2014). Likewise, 
our results of the sensitivity analysis are in agreement with another 
empirical model that estimates enteric CH4 emissions, as described by 
Appuhamy et al. (2016), who listed 40 empirical models from several 
regions (Australia, North America, Europe and New Zealand), which all 
include a measure of intake as DMI, GEI or metabolizable energy (ME) 
intake. 

4.1. Assumptions and limitations of the present study 

In the present study, we assumed that the emissions registered in the 
OCRC also applied to grazing animals, which may not be a correct 
assumption. The OCRC technique has some limitations in measuring the 
CH4 production of grazing animals (Goopy et al., 2016) because the 
capacity of animals to select the best quality forages cannot be replicated 
in the chambers where animals are offered a total mixed ration. 
Therefore, the DMI registered in chambers may not reflect that of 
grazing animals. Finally, our uncertainty assessment is based on MCS, 
considered the most efficient method for estimating uncertainty (Her
rador et al., 2005). However, MCS presents some limitations, such as 1) 
the computer runtime can be long in complex cases, and 2) the selection 
of the proper PDF of IPAs can be difficult due to the inaccuracy of actual 
AD or the misunderstanding of the underlying biological process. 

5. Conclusion 

The Tier 2 approach implementation using disaggregated AD and 
country-specific emission factors allowed us to develop a better in
ventory of the enteric CH4 emissions for cattle in Mexico and a more 
accurate estimation of the size of its uncertainty. To the best of our 
knowledge, the present study is one of the first attempts to merge the use 
of country-specific emission factors obtained from respiratory chamber 
measurements, disaggregation, and categorization of the cattle in
ventory among geo-climatic regions with a robust methodology for the 
propagation of uncertainty. Also, through the sensitivity analysis, we 
identified the primary sources of uncertainty, which allowed us to 
conclude that future efforts to increase the quality of CH4 inventories 
must be focused on improving AD, particularly better EF for the different 
cattle categories in the Tropical climate regions. 
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Haenel, H.-D., Rösemann, C., Dämmgen, U., Döring, U., Wulf, S., Brigitte, E.-M., 
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