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In this work, we present a mechanism how to yield a family of hyperchaotic multi-scroll
systems in Rn based on unstable dissipative systems. This class of systems is constructed
by a switching control law changing the equilibrium point of an unstable dissipative sys-
tem. For each equilibrium point presented in the system a scroll emerges. The switching
control law that governs the position of the equilibrium point varies according to the num-
ber of scrolls displayed in the attractor. Thus, if two systems display different numbers of
scrolls, they have different switching control laws. This paper also presents a generalized
theory that explains different approaches such as hysteresis and step functions from a uni-
fied viewpoint, extending the concept of chaos in R3 to hyperchaotic multi-scroll systems
in Rn;n P 4. An illustrative example of synchronizing a communication system is given
based on the developed theory.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Chaos has been an extremely well-studied area in the last decades: some recent approaches are based on suppression or
induction of chaotic behavior, others focus on synchronization [1,2] and the generation and analysis of time series with the
purposes of implementing them for modulation schemes or encrypting them in communication systems [3].

So far, chaotic behavior may be generated in two kinds of nonlinear systems. The first one includes continuous systems
with nonlinearities given by multiplication of their states, and the second one presents a combination of piecewise-linear
(PWL) systems.

The characterization [4], implementation, and design of new switched systems of chaotic behavior [5], especially possess-
ing multiple scrolls or wings [6,7], has been of great interest for the scientific community. The methods implemented to gen-
erate multi-scroll systems in the literature may be catalogued in two: (i) systems presenting more equilibrium points than
wings or scrolls, (ii) systems presenting the same number of equilibrium points and wings or scrolls.

The present study focuses on generation of a family of systems with multi-scroll attractors based only on PWL systems.
This family presents three remarkable properties as follows.
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1.1. An hyperchaotic multi-scroll system.

A characterization of dynamical behavior can be achieved by means of the Lyapunov exponents. Using their values, one
can determine the average exponential rates at which nearby orbits diverge or converge. Their signs define a qualitative pic-
ture of dynamics that systems may exhibit, ranging from fixed points via limit cycles and tori to more complex chaotic and
hyperchaotic attractors. Whereas chaos can arise in discrete-time systems with only a single state (which must be positive),
at least three state variables are required to generate chaos in continuous-time systems [8]. Such systems are characterized
by one positive exponent in the Lyapunov spectrum. However, in order to obtain hyperchaos, the system must be charac-
terized by the presence of at least two positive Lyapunov exponents. The reason is that the trajectory has to be nonperiodic
and bounded within a finite region and cannot intersect itself.

Since the hyperchaotic Rössler attractor was reported in [9], many studies have been focused on generation of hypercha-
otic systems [10,11], and their synchronization problem [12]. The methodology used to generate this behavior in benchmark
systems, such as Lorenz and Rössler ones, is via nonlinearities of the system. The class of systems considered in this paper
possesses, besides being hyperchaotic, the following property.

1.2. For each equilibrium point introduced into the system, a scroll emerges in the attractor.

It is known that the generation of multi-scroll behavior in PWL systems is based on the location of their equilibrium
points. Their commutation surfaces or thresholds bound the scrolls and give a specific direction to the flow. Various papers
on this topic have presented different theories developed to explain how to generate multi-scroll chaotic attractors. This pa-
per develops an approach to generate chaotic attractors based on unstable dissipative systems.

Since the work reported by Suykens in [13] about n-double scrolls in the Chua’s system, there have been different ap-
proaches to yield multi-scroll attractors. These approaches vary from modifying the nonlinear part in the Chua’s system
[14,15,13,16–18], to using nonsmooth nonlinear functions, such as hysteresis [19,20], saturation [21,22], threshold, and step
functions [23–29]. Recently, fractional-order systems have also been used to generate multi-scroll attractors [30–32].

There have been also reports on generation of hyperchaotic multi-scroll behavior in [33–35], where the number of equi-
librium points is greater than the number of scrolls. In addition to presenting hyperchaotic attractor with an equal number of
scrolls and equilibrium points, the considered class of systems possesses the following third property.

1.3. The family of hyperchaotic multi-scroll systems can be extended to Rn;n P 4.

Yalçin et al. [25] reported that 1D, 2D and 3D-grid of scrolls may be introduced locating them around the equilibrium
points using a step function. Lu et al. in [19,20] presented an approach based on hysteresis that enables the creation of
1D n-scrolls, 2D n�m-grid scrolls, and 3D n�m� l-grid scrolls.

In this work, continuing [29], we develop a generalized theory capable of explaining different approaches as hysteresis
and step functions and extending the concept to hyperchaotic multi-scroll systems to Rn;4 6 n 2 Z.

This family of systems is composed of unstable dissipative systems (UDS) [29,36]. Since such a system is unable to provide a
stable flow by itself (due to unstable saddle points among its equilibria), a switching control law (SCL) is designed to change
from one UDS to another and, by this mechanism, generate a PWL system with a multi-scroll attractor. Each scroll results
from an equilibrium point and an unstable ‘‘one-spiral’’ trajectory it produces.

This paper is organized as follows: In Section 2, we introduce a theory explaining the generation of multi-scroll behavior
via UDS. Some examples are given. Section 3 presents a family of hyperchaotic systems in Rn;n P 4. In Section 4, we compare
some of the previously known approaches to the designed UDS-based method. Section 5 presents a communication system
based on the synchronization of UDS systems. Section 6 concludes this study.

2. Generation of multi-scroll attractors by UDS

We consider the class of linear system given by

_v ¼ Avþ B ð1Þ
where v ¼ ½x1; x2; . . . ; xn�T 2 Rn is the state variable, B ¼ ½B1;B2; . . . ;Bn�T 2 Rn stands for a real vector, A ¼ ½aij� 2 Rn�n with

i; j ¼ 1;2; . . . ;n denotes a linear operator (matrix). The equilibrium point is located at v� ¼ �A�1B. The system dynamic is
given by the matrix A, which has a stable manifold Es and an unstable one Eu. On the basis of the previous discussion, it
is possible to define two types of UDS as follows:

Definition 2.1. We say that system (1) is an UDS of Type I if
Pn

i¼1ki < 0, where ki; i ¼ 1; . . . ;n, are eigenvalues of A, and at
least one ki is a negative real eigenvalue, and at least two ki are complex conjugate eigenvalues with positive real part
Refkig > 0.
Definition 2.2. We say that system (1) is an UDS of Type II if
Pn

i¼1ki < 0, where ki; i ¼ 1; . . . ;n, are eigenvalues of A, at least
one ki is a positive real eigenvalue, and at least two ki are complex conjugate eigenvalues with negative real part Refkig < 0.
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Note that systems with these characteristics present two kinds of saddle equilibrium points. An UDS of Type I presents a
stable fast eigendirection, due to the real negative eigenvalue, and an unstable spiral slow eigendirection, due to the positive
real part of the complex conjugate eigenvalues. An UDS of Type II presents an unstable fast eigendirection, due to the real
positive eigenvalue, and an stable spiral slow eigendirection, due to the negative real part of the complex conjugate eigen-
values. Fig. 1 illustrates the behavior of each of the two types of UDS. In this paper, we focus our study only on UDS of Type I.

The next proposition follows from the general theory of linear systems.

Proposition 2.1. Let the system (1) be an UDS of Type I with ordered eigenvalues set K ¼ fk1; k2; . . . ; kng; k1 6 k2 6 . . . 6 kn.
Then, the system has a stable manifold Es ¼ spanfk1; k2; . . . ; kjg � Rn and an unstable one
Eu ¼ spanfkjþ1; kjþ2; . . . ; kng � Rn;1 6 j 6 n, and the following statements are true:

(a) Any initial condition v0 2 Rn=Es leads to an unstable orbit that goes to infinity.
(b) Any initial condition v0 2 Es leads to a stable orbit that converges at v� and the system does not generate oscillations.
(c) The basin of attraction is Es � Rn.

Now, we consider a switching system based on the linear system (1) given by
_v ¼ Avþ BðvÞ;

BðvÞ ¼

B1; if v 2 D1;

B2; if v 2 D2;

..

. ..
.

Bk; if v 2 Dk;

8>>>><
>>>>:

ð2Þ
where Di are such that Rn ¼ [k
i¼1Di. Thus, the equilibria of the system (2) are v�i ¼ �A�1Bi, with i ¼ 1; . . . ; k. The objective is to

define vectors Bi assuring the stability of a class of dynamical systems in Rn with oscillations within an attractor. In other
words, for any initial condition v0 2 Rn, the orbit /ðv0Þ of the system (2) is trapped in an hyperchaotic attractor A upon defin-
ing at least two vectors B1 and B2. This class of systems can display various multi-scroll attractors as a result of a combination
of several unstable ‘‘one-spiral’’ trajectories, i.e., we are interested in a vector field that can yield multi-scroll attractors by

switching vectors Bi; i ¼ 1; . . . ; k and k P 2. We assume that each domain Di � Rn contains the equilibrium v�i ¼ �A�1Bi. Fol-
lowing the preceding discussion, we can define a multi-scroll chaotic system based on UDS of Type I.

Definition 2.3. Consider a system given by (2) in Rn and equilibrium points v�i ; i ¼ 1; . . . ; k and k P 2. We say that system (2)
is a multi-scroll system with the minimum of equilibrium points, if each v�i observes oscillations around it and for any initial
condition v0 2 Rn the orbit /ðv0Þ generates an attractor A � Rn.

To illustrate our approach, we consider a particular case of the linear ordinary differential equation (ODE) written as
x
...
þa33€xþ a32 _xþ a31xþ b3 ¼ 0, representing the state equation (2), where the matrix A and the vector B are defined as

follows:
A ¼
0 1 0
0 0 1
�a31 �a32 �a33

0
B@

1
CA; B ¼

0
0
b3

0
B@

1
CA: ð3Þ
The characteristic polynomial of the matrix A given by (3) takes the form k3 þ a33k
2 þ a32kþ a31.

Defining the coefficients as
a31 ¼ 1:5; a32 ¼ 1; a33 ¼ 1: ð4Þ
results in the set of eigenvalue K ¼ f�1:20;0:10� 1:11ig, which satisfy Definition 2.1 and ensure that the system is an UDS
of Type I. The component b3 of the vector B is governed by a switching control law (SCL), which can be designed depending
on the number of scrolls to be introduced. A SCL for 2 scrolls is represented as:
(a) (b)

E u

E u

E s

E s

Fig. 1. Dynamics of UDS: (a) Type I, (b) Type II.
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b3 ¼
1:8; if x1 P 0:3;

�0:9 otherwise:

�
ð5Þ
The equilibrium points of the system (2) using the matrix A and vector B defined in (3) and the SCL (5) are v�1 ¼ ð1:2;0;0Þ
T

and v�2 ¼ ð�0:6;0;0ÞT . Note that the number of equilibrium points coincides with the number of scrolls in the attractor.
Fig. 2(a) depicts the projection of the 2-scroll attractor onto the ðx1; x2Þ plane generated by the signal u from (5) under Eqs.

(2) and (3) and initial conditions v0 ¼ ð1;0;1Þ
T .

Now, if we change the control signal given by the SCL, then it is possible to generate an attractor with a desired number of
scrolls. The next example presents a 4-scroll. For this purpose, b3 can be assigned as follows:
b3 ¼

1:8; if x1 P 0:9;

0:9; if 0:3 6 x1 < 0:9;

0; if � 0:3 < x1 < 0:3;

�0:9; if x1 6 �0:3:

8>>><
>>>:

ð6Þ
The parameter b3 given by the SCL (6) introduces other two equilibrium points located at v�3 ¼ �v�2 and v�4 ¼ ð0; 0;0Þ
T .

Fig. 2(b) shows the projection of the 4-scroll attractor given by the SCL (6). Note that displacement of the scrolls is shown
along the x1 axis. Introducing more equilibrium points along different axes and designing a specific SCL would result in any
desirable number of scrolls inside a n-dimensional grid. For example, for an unstable system (1) and a SCL given by (5), a
typical orbit is shown in Fig. 3.

3. Generation of a family of hyperchaotic multi-scroll attractors in Rn

Here, we present a family of hyperchaotic multi-scroll attractors, based on the Type I UDS theory described before. The
class of linear systems is given by (1) in Rn, with n P 4. First, considering n ¼ 4, we define the state variable as
v ¼ ½x1; x2; x3; x4�T 2 R4, adding a negative feedback in the equation for x4, so the matrix A and vector B are defined as follows:
A ¼

0 1 0 0
0 0 1 0
�a31 �a32 �a33 0

0 �1 0 �1

0
BBB@

1
CCCA; B ¼

0
0
b3

b4

0
BBB@

1
CCCA: ð7Þ
The characteristic polynomial takes the form ðkþ 1Þðk3 þ a33k
2 þ a32kþ a31Þ. With the parameter values assigned in (4),

the set of eigenvalues becomes K ¼ f�1:00;�1:20;0:10� 1:11ig, where a negative real eigenvalue has been added. Thus Def-
inition 2.1 is satisfied and the system given by (2) and (7) is an UDS of Type I.

For the sake of simplicity, we consider b3 equal to b4. Then the control signal may be described by any of the SCLs given
before ((5) or (6)). Both SCLs make the system (2) and (7) behaving as a multi-scroll system with the minimum number of
equilibria for a PWL system.

Using the algorithm and based on the definition introduced by Wolf et. al. [37], the Lyapunov exponents for the system (2)
and (7) are two maximum positive exponents ð0:10223;0:10119Þ, which demonstrate that the system is hyperchaotic. These
exponents remain the same regardless of the SCL applied to the system.
−2 −1 0 1 2 3
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The projections onto the ðx1; x2Þ plane of the attractors generated by different control signals: (a) (5), (b) (6), with the coefficients values defined in
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Fig. 3. Typical orbit behavior for a two equilibria UDS of Type I.
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Fig. 4 shows the projections of the hyperchaotic attractor onto the ðx1; x2Þ; ðx1; x3Þ and ðx1; x4Þ planes, which is generated
by the Eqs. (2) and (7) with initial conditions v0 ¼ ð1;1;0;0Þ

T and SCLs corresponding to:

(a) 3-scroll attractor
Fig. 4.
the SCL
the 5-s
b3 ¼
0:9; if x1 P 0:3;

0 if � 0:3 < x1 < 0:3;

�0:9; if x1 6 �0:3:

8><
>: ð8Þ
(b) 5-scroll attractor
b3 ¼

1:8; if x1 P 0:9;

0:9; if 0:3 6 x1 < 0:9;

0; if � 0:3 < x1 < 0:3;

�0:9; if � 0:9 < x1 6 �0:3;

�1:8; if x1 6 �0:9:

8>>>>>><
>>>>>>:

ð9Þ
The equilibrium points of system (1), (7) are v� ¼ ½b3=a31;0;0; b3�
T . Since the equilibrium points are controlled by (8) and

(9), they are located in the plane ðx1; x4Þ, as observed in Fig. 4(c) and (f). In addition, choosing an appropriate SCL makes it
possible to generate any desirable number of scrolls in the system.

So far, we have worked with the parameters defined in (4). Varying the parameter a31 in (7), we determine for which val-
ues Definition 2.1 is satisfied. Fig. 5 corresponds to the range �2 6 a31 6 2:5. For values of a31 less than 0, the system pos-
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Hyperchaotic multi-scroll attractors in R4 generated by the system (2) and (7), using the values defined in (4) with different control signals. Applying
(8), the projections of the 3-scroll attractor are shown onto: (a) ðx1; x2Þ plane, (b) ðx1; x3Þ plane, (c) ðx1; x4Þ plane. Applying the SCL (9), projections of

croll attractor are shown onto: (d) ðx1; x2Þ plane, (e) ðx1; x3Þ plane, (f) ðx1; x4Þ plane.
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sesses one positive real eigenvalue, one negative real eigenvalue, and two complex conjugate eigenvalues with a negative
real part. Therefore, the system is an UDS of Type II of Definition 2.2. In the area between 0 and approximately 1, the real
parts of the eigenvalues are negative. This means that the system is stable and any equilibrium point for this region is a sink.
Multistability holds in this area for different initial conditions. Finally, for values of a31 greater than approximately 1, the
system possesses two real eigenvalues, one positive and one negative, and two complex conjugate eigenvalues with positive
real part. Therefore the system is an UDS of Type I for a31 > 1.

We can consider any system of the form (2) and (7) with parameters a31 > 1;a32 ¼ 1;a33 ¼ 1 as a hyperchaotic multi-
scroll UDS of Type I.

The design procedure can be extended to greater dimensions. For instance, considering n ¼ 5, the state variable is
v ¼ ½x1; x2; x3; x4; x5�T 2 R5, and the matrix A and the vector B are defined as follows:
Fig. 5.
real par
A ¼

0 1 0 0 0
0 0 1 0 0
�a31 �a32 �a33 0 0

0 �1 0 �1 0
0 0 �1 0 �1

0
BBBBBB@

1
CCCCCCA
;

B ¼

0
0
b3

b4

b5

0
BBBBBB@

1
CCCCCCA
:

ð10Þ
Here, setting b3 ¼ b4 ¼ b5 can be given by the SCLs (5), (6), (8), or (9). This system, obtained from (7) by introducing a

negative feedback into the equation for x5, possesses the characteristic polynomial ðkþ 1Þ2ðk3 þ a33k
2 þ a32kþ a31Þ. Two

more negative real eigenvalues were introduced; however, the form of the polynomial is similar to those in R3 and R4. Using
the same approach, this result can be generalized to any dimension n P 4 with the following system parameters:
A ¼

0 1 0 0 � � � 0
0 0 1 0 � � � 0
�a31 �1 �1 0 � � � 0

0 �1 0 �1 � � � 0
..
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 �1 0 �1

0
BBBBBBBBB@

1
CCCCCCCCCA
;

B ¼

0
0
b3

b4

..

.

bn

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð11Þ
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Eigenvalues of the system given by (2) and (7) as functions of the parameter a31. The real eigenvalues are marked with squares and crosses, and the
t of the complex conjugate eigenvalues is marked with circles and dots. For a31 >	 1, the system is an UDS of Type I.
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Definition 3.1. Consider a system given by (2) and (11) in Rn with n P 4, which possesses a characteristic polynomial of the

form ðkþ 1Þðn�3Þðk3 þ k2 þ kþ a31Þ. We say that a system belongs to a family of hyperchaotic multi-scroll unstable dissipative
systems, if a31 > and b3; b4; . . . ; bn define such a SCL that each equilibrium point v�i observes oscillations around it, and the
flow /ðv0Þ generates an attractor A � Rn.

Regardless of the system dimension, the two maximum Lyapunov exponent remains positive, thus determining that any
system in Rn belongs to the family. The method to obtain the proposed family of hyperchaotic multi-scroll in Rn can be sum-
marized as follows:


 First, select an R3 module as described in (3).

 Select parameters a31;a32;a33 to assign eigenvalues according to Definition 2.1.

 For each new degree of freedom introduced into the system, select the system matrices A and B as described in (11).

 Design the SCL BðvÞ in (2), taking into account the distance between the equilibrium points of the introduced subsystems.

Each equilibrium point results in a scroll.

We conducted an electronic circuit implementation of a multi-scroll attractor in R4. The description and electronic
scheme are available from the authors upon request.
4. Unified theory of multiscroll attractors in Rn

Using the UDS-based approach, it is possible to develop a unified theory that includes different methods proposed for
generation of hyperchaotic multi-scroll attractors. Here, we analyze such methods as hysteresis [19] and step function
[25]. Other generation methods can be found in [19–21,24,25,27].
4.1. Step function

Yalçin [25] used a step function to generate 1D, 2D, and 3D-grid scroll attractors. The system (3), (4) with the parameters
implemented in [25] (a31 ¼ 0:8;a32 ¼ a33 ¼ 1) results in the eigenvalue set K ¼ f�0:89;0:04� 0:94ig satisfying Definition
2.1. Here, the equilibrium points are located along the x1 axis depending on the number of scrolls.

To include this method in the framework of the study of the UDS of Type I in R4, we transform the step function to incor-
porate it into the system (7). The step function takes the following form:
b3ðx1Þ ¼
XMx

i¼1

gð�6iþ3Þ
10
ðx1Þ þ

XNx

i¼1

gð6i�3Þ
10
ðx1Þ; ð12Þ
where
ghðx1Þ ¼

0:9; if x1 P 0 h > 0
0; if x1 < 0 h > 0
0; if x1 P 0 h < 0
�0:9; if x1 < 0 h < 0:

8>>><
>>>:

ð13Þ
Here, Mx;Nx 2 R correspond to the numbers of equilibrium points added to the system from the left or from the right of
the origin, respectively, along the x1 axis. The function ghðx1Þ represents the step size, which is related directly to the
switching surface of the system. Fig. 6 shows the projections of the attractors generated by the step function onto the
ðx1; x2Þ plane and the ðx1; x4Þ plane. Since the SCL parameter b3 affects only the states x1 and x4, the equilibrium points
are located along the x1 axis (see Fig. 6(a)) and on the plane ðx1; x4Þ (Fig. 6(b)). The initial condition for the system is

v0 ¼ ð1;1;0; 0Þ
T .

4.2. Hysteresis

Lü et al. [19], designed a hysteresis series based on a step function to obtain multi-scroll chaotic attractors in 1-D n-scroll,
2-D n�m-grid scroll, and 3-D n�m� l-grid scroll. The hysteresis series is given by Eqs. (1) and (3) in [19].

This approach can also be considered under the UDS definition of Type I. Analyzing the matrix A in (3) with the param-
eters given in [19] (a31 ¼ 0:8;a32 ¼ 0:72;a33 ¼ 0:6), results in the eigenvalue set K ¼ f�0:85;0:12� 0:95ig, satisfying Defi-
nition 2.1. The equilibrium points for the 1-D n-scroll are located along the x-axis.

We use the parameters (4) in the matrix (7) to produce hysteresis based on a step function in R4. The corresponding SCL is
governed by the parameters b3 and b4 : b3 takes the form:
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Fig. 6. The projection of the attractors generated by the step function (13) with Mx ¼ Nx ¼ 3 onto (a) ðx1; x2Þ plane, (b) ðx1; x4Þ plane.
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b3 ¼

�3:6; if x1 < �2:1þ rd;

�2:7; if � 2:1þ rd < x1 < �1:5þ rd;

�1:8; if � 1:5þ rd < x1 < �0:9þ rd;

�0:9; if � 0:9þ rd < x1 < �0:3þ rd;

0; if � 0:3þ rd < x1 < 0:3þ rd;

0:9; if 0:3þ rd < x1 < 0:9þ rd;

1:8; if 0:9þ rd < x1 < 1:5þ rd;

2:7; if 1:5þ rd < x1 < 2:1þ rd;

3:6; if x1 > 2:1þ rd

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð14Þ
and b4 ¼ 0. Here, r ¼ sgnð d
dt x1Þ denotes the direction on the x1 axis where the system moves to, and d 2 R is a constant value

that defines hysteresis properties. A variation in d increases or decreases the hysteresis region of the system, as depicted in
Fig. 7. The resulting multi-scroll attractor may also change according to variations of this parameter, this numerical simu-
lations were implemented with the subroutine ode45 from MATLAB. Fig. 8(a) presents a bifurcation diagram of the state
x1 vs d. The initial condition for the system is v0 ¼ ð1;0;1;1Þ

T . It can be observed that for d � 0 the SCL makes the system
behaving as a 9-scroll attractor. In the interval 0:1 6 d < 0:8, the system also exhibits multi-scroll, but the switching surfaces
generating the scrolls are displaced by d. There are intervals near some values of d, where the attractor appears to collapse to
only one scroll, for example, d ¼ 0:05 and d ¼ 0:235. These intervals correspond areas of multistability. Fig. 8(b) presents a
zoom for 0 6 d < 0:5, where the multi-scroll is displayed in more detail. Fig. 9 shows the projection onto the ðx1; x2Þ plane for
d ¼ 0:15. It can be concluded that the hysteresis series based on a step function acts exactly as the SCL in UDS of Type I de-
scribed previously in (2) for d ¼ 0.

5. Communication system

In this section, we implement a communication system based on chaotic modulation, as proposed in [38]. The idea is to
synchronize two identical UDS systems in R4 given by Eqs. (1) and (7), using the complete replacement design from Pecora
and Carroll [39], as depicted in Fig. 10. Although there are several approaches that can be used to synchronize a pair of cha-
otic systems [1,2,40], here we employ the one described by Pecora and Carroll, since this method allows only one signal to be
transmitted reducing the risk of eavesdropping. The master system is given by:
_vm ¼ Avm þ Bmum; ð15Þ
wherevm ¼ ½x1m; x2m; x3m; x4m� is the state variable and the linear operator A takes the same form as in (7). Here, we consider that
Bm ¼ ½bi;j� 2 R4�2; i ¼ 1;2; . . . ;4; j ¼ 1;2, is a real matrix and um ¼ ½uj;1� 2 R2�1 represents both SCL and external input as follows:
Bm ¼

0 1
0 0
1 0
1 0

0
BBB@

1
CCCA; um ¼

b3

n

� �
; ð16Þ



Fig. 7. Diagram of the hysteresis series (14).

Fig. 8. Bifurcation of the attractors generated by the variation of d along the x1 axis, in the hysteresis series (14): (a) 0 > d > 1:8, (b) 0 > d > 0:5.
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where n is analog information signal which affects the master system. We take x1m from the master system and use it to re-
place the state of the slave system initialized with different initial conditions. The synchronized subsystem is given by
_vr ¼ Avr þ Brur , where vr ¼ ½x1m; x2r; x3r; x4r �, and A;Br , and ur are the same as in (7).

As a result, the master and slave systems take the following form:



−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x1
x 2

Fig. 9. The projection of the attractors generated by the hysteresis series (14) for d ¼ 0:15 onto the ðx1; x2Þ plane.

Fig. 10. Complete replacement synchronization scheme with chaotic modulation of the information input signal n.
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Fig. 11. (a) Modulated n (red) and reconstructed nr (blue) signals. (b) Error between n and nr . (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.)
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_v1m ¼ x2m þ n;

_v2m ¼ x3m;

_v3m ¼ �a31x1m � a32x2m � a33x3m þ b3;

_v4m ¼ �x2m � x4m þ b3;

v1r ¼ v1m;

_v2r ¼ x3r ;

_v3r ¼ �a31x1m � a32x2r � a33x3r þ b3;

_v4r ¼ �x2r � x4r þ b3;

ð17Þ
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where b3 is defined in Eq. (5). Here, the state x1m of the master system is the carrier signal, which is transmitted to the slave
one. Given that vm and vr are identical, the entire hyperchaotic systems would be synchronized if limt!1kvm � vrk ! 0.
Accordingly, the reconstruction of the information signal could be made as nr ¼ d

dt x1m � x2r .

The original information signal is given by n ¼ 0:5sinð40ptÞ and is depicted in Fig. 11(a), along with the reconstructed sig-
nal nr . The initial conditions are assigned as vm0 ¼ ð1;0;0;0Þ

T and vr0 ¼ ð1;1;1;0Þ
T . Fig. 11(b) shows the error e ¼ kn� nrk

between the original and reconstructed signals. It can be observed that the error diminishes very rapidly, thus proving
the feasibility of the developed approach.

6. Conclusions

This work presents a method based on UDS of Type I to generate a family of hyperchaotic attractors that possess multisc-
rolls in Rn. Various techniques to yield multiscrolls, such as step function and hysteresis, can be covered by this approach.
The multi-scroll systems generated here require a prior characterization of the equilibria for each of the subsystems con-
tained within. Therefore, one can design a SCL that generates the flow between domains of unstable subsystems belonging
to the PWL system.

Taking this in consideration, we recall one of the main features pertinent to the UDS of Type I. For each equilibrium point
added to the system, a scroll emerges. This presents a significant difference from systems consisting of UDS of both types,
which observe two scrolls for each series made of two systems of Type I and one of Type II. Using the developed approach,
a communication scheme has been implemented based on synchronizing two UDS systems.
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