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Simple Summary: Milk is the most consumed dairy product in the world and for humans is one
of the major sources of beneficial biocomponents. Lipids from oilseeds can be transferred to milk
from cows or converted to other biomolecules with nutraceutical effects, resulting in healthier milk.
However, there is a great uncertainty with regard to the effect of some variables related to the animal,
the seed, the level of inclusion and the characteristics of the diet. The objective of this review was to
show the effect of the inclusion of oilseeds in the diet of dairy cows on milk yield, milk components
and the fatty acid profile in milk. A systematized search was carried out of published articles with
high scientific rigor where the feeding strategy in dairy cows was the inclusion of oilseeds in the
diet. Milk from oilseed-fed cows contained a higher amount of unsaturated 18-carbon fatty acids,
including omega-3 series, rumenic and vaccenic fatty acids. Overall, supplementation with oilseeds
in the cow’s diets increases the concentration of biomolecules in milk with potential positive effects
on human health.

Abstract: Oilseed supplementation is a strategy to improve milk production and milk composition
in dairy cows; however, the response to this approach is inconsistent. Thus, the aim of this study
was to evaluate the effect of oilseed supplementation on milk production and milk composition in
dairy cows via a meta-analysis and meta-regression. A comprehensive and structured search was
performed using the following electronic databases: Google Scholar, Primo-UAEH and PubMed.
The response variables were: milk yield (MY), atherogenic index (AI), Σ omega-3 PUFA, Σ omega-6
PUFA, fat, protein, lactose, linoleic acid (LA), linolenic acid (LNA), oleic acid (OA), vaccenic acid
(VA), conjugated linoleic acid (CLA), unsaturated fatty acid (UFA) and saturated fatty acid (SFA)
contents. The explanatory variables were breed, lactation stage (first, second, and third), oilseed
type (linseed, soybean, rapeseed, cottonseed, and sunflower), way (whole, extruded, ground, and
roasted), dietary inclusion level, difference of the LA, LNA, OA, forage and NDF of supplemented
and control rations, washout period and experimental design. A meta-analysis was performed with
the “meta” package of the statistical program R. A meta-regression analysis was applied to explore the
sources of heretogeneity. The inclusion of oilseeds in dairy cow rations had a positive effect on CLA
(+0.27 g 100 g−1 fatty acids (FA); p < 0.0001), VA (+1.03 g 100 g−1 FA; p < 0.0001), OA (+3.44 g 100 g−1

FA; p < 0.0001), LNA (+0.28 g 100 g−1 FA; p < 0.0001) and UFA (+8.32 g 100 g−1 FA; p < 0.0001), and
negative effects on AI (−1.01; p < 0.0001), SFA (−6.51; p < 0.0001), fat milk (−0.11%; p < 0.001) and
protein milk (−0.04%; p < 0.007). Fat content was affected by animal breed, lactation stage, type
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and processing of oilseed and dietary NDF and LA contents. CLA, LA, OA and UFA, desirable
FA milk components, were affected by type, processing, and the intake of oilseed; additionally,
the concentrations of CLA and VA are affected by washout and design. Oilseed supplementation
in dairy cow rations has a positive effect on desirable milk components for human consumption.
However, animal response to oilseed supplementation depends on explanatory variables related to
experimental design, animal characteristics and the type of oilseed.

Keywords: CLA; atherogenic index; milk fatty acid; experimental design; roasted; washout

1. Introduction

The increased consumer concern for the diet–health relationship has increased the
attention of nutritionists and animal scientists on the health-beneficial effects of individual
foods [1]. Bovine milk is considered as one of the most complete foods with a rich variety of
essential nutrients and biocomponents [2]. In this sense, the assessment of milk’s fatty acid
(FA) profile has been of great importance in recent decades. Milk fat is the richest natural
source of conjugated linoleic acid (CLA), with contents that range from 2 to 53.7 mg g−1 [3].
The wide variability of CLA content can be explained by several factors such as breed,
geographical region, and management; however, the most effective strategy to modulate
milk’s FA profile is through dietary manipulation [4,5].

Conjugated linoleic acid is made up of a set of positional and geometric isomers
of LA (C18:2 c9c12). CLA is an intermediate product in lipid metabolism and ruminal
biohydrogenation, and is naturally found in milk and meat from ruminants [6]. CLA
is particularly important because various studies using animal models or cell cultures,
and some using humans, have found nutraceutical properties in its consumption, such as
antiatherogenic [7], antidiabetogenic [8], anticarcinogenic [9–11] effects, and that it allows
the modification of body composition [12].

The manipulation of diets fed to dairy cows determines variations in the fat profile of
milk; for instance, the inclusion of ingredients with higher contents of monounsaturated
fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) increases the CLA [13]. Fat sup-
plementation in dairy cow rations is mostly based on fats, oils and oilseeds from vegetable
sources. When agro-climatic and economic conditions allow, oilseed supplementation has
been widely used and evaluated due to their lower cost, higher UFA content and protein
contribution to the ration compared to other strategies such as the use of oils. However,
results from studies that have assessed the effect of oilseed inclusion in dairy cow rations
have been inconsistent, which can be associated with differences in the methodological
and experimental conditions, such as the inclusion level, content of precursors of basal
diets and processing of oilseeds and animal variables which could potentially increase milk
yield, fat content and FA transfer from oilseeds to milk [14].

Meta-analysis is a cross-disciplinary statistical framework for estimating the average
effect associated with a determined intervention factor from several study outcomes under
different experimental conditions; additionally, a random-effect model of meta-analysis
can be expanded to a mixed-effect model to assess the sources of heterogeneity through
meta-regression [15]. Our objective was to conduct an analytic review to analyze the global
effect of supplementing dairy cows with oilseeds on milk yield and chemical composition
through a meta-analysis approach. Additionally, the sources of variability between studies
that explain the heterogeneity of oilseed supplementation were explored.

2. Materials and Methods
2.1. Search Strategy

A compressive and structured search of scientific papers focused on evaluating the
effect of oilseed supplementation on milk yield and the chemical composition of dairy
cows was performed using the following search engines: Google Scholar (http://scholar.

http://scholar.google.com
http://scholar.google.com
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google.com), Primo-UAEH (https://www.uaeh.edu.mx/bdigital) and PubMed (https:
//pubmed.ncbi.nlm.nih.gov). To avoid reviewer bias, the article search was carried out by
three field experts. The keywords provided to the field experts were the following: “dairy
cow”, “oilseed”, “milk yield”, “CLA”, “grazing”, “indoor”, and “fatty acids”. These were
combined by Boolean logic (“AND”, “OR”). Only peer-reviewed articles published in the
English language were considered in the current study. Further articles were identified
from the list of references of articles found in the first search and were included in the
global database.

2.2. Eligibility Criteria

The inclusion criteria for selected studies were as follows: (a) studies published in an
international peer-reviewed scientific journal (unpublished manuscripts, conference pro-
ceedings, and dissertations were hence excluded); (b) studies that use oilseed-supplemented
diets and control groups; (c) studies that reported the level of supplementation of oilseed;
(d) studies that specified the procedure of randomly assigning animals to each treatment
(experimental design); (e) studies that reported the least square means and a measure of
data variability (coefficient of variation, standard deviation or standard error) of the control
and supplemented groups; and (f) studies that reported the sample size of each group.

2.3. Database

A total of 33 studies were selected to be included in the meta-analysis (Figure 1). From
the studies that met the inclusion criteria, one reviewer extracted the data for analysis to an
Excel spreadsheet (version 2016, Microsoft Corp., Redmond, WA, USA), and the other two
reviewers verified them to search for any discrepancies. An Excel spreadsheet was created
for each one of the following response variables: milk yield (MY; l day−1), fat content (g
100 g−1), protein content (g 100 g−1), lactose content (g 100 g−1), LA (g 100 g−1 FA), LNA
(g 100 g−1 FA), OA (g 100 g−1 FA), VA (g 100 g−1 FA), CLA (g 100 g−1 FA), Σ omega-3
FA (g 100 g−1 FA), Σ omega-6 FA (g 100 g−1 FA), SFA (g 100 g−1 FA), UFA (g 100 g−1 FA)
and AI (g 100 g−1 FA). To explore the sources of between-study variability, the following
explanatory variables were a priori selected: breed of cow (Holstein, Jersey and Brown
Swiss), lactation stage (first, second and third), type of oilseed (linseed, soybean, rapeseed,
cottonseed, and sunflower), processing of oilseed (whole, extruded, roasted, and ground),
inclusion level of oilseed, the period (in days) of washout, type of experimental design
(longitudinal or crossover), the difference between the basal and supplement diets of NDF,
forage rate, LA, LNA and OA.

2.4. Meta-Analytical Procedure

A meta-analysis was conducted using the “meta” package version 4.13-0 [16] in R
environment for statistical computing R (version 4.0.2; R Core Team; Vienna, Austria).
A random-effects model was implemented in the current work, which assumed that the
observed difference among studies is a combination of chance and genuine variation in the
intervention effects, where each study is a comparison between an experimental (E) group
and a control (C) group. Random-effects models were used using the approach proposed
by DerSimonian and Laird [17]:

YE
ij = N

(
µE

i , δE
i

)
, j = 1, . . . , nE

i , i = 1, . . . , k, (1)

where YE
ij is the jth observation in the ith experiment from the experimental group assuming

that this is normally distributed with a common mean µE
i and a common variance δE

i . The
measure to summarize the observed intervention effect used in the current work was the
standardized mean difference (SMD). The SMD was calculated according to the method
proposed by Hedges [18], and the pooling of analyzed studies was carried out using
the inverse variance weighting. Additionally, 95% confidence intervals (95% CI) were
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calculated for individual studies and effect size was determined, assuming a standard
normal distribution.
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The raw mean difference (RMD) was calculated for response variables sharing the
same scales, which permits the interpretation of the summary effect under the original
measures units [19]. Heterogeneity was assessed through the estimation of between-study
random-effects variance (t2) and the percentage of variability explained by heterogeneity
rather than simple variance (I2 index) [20]. Values of >35% for the I2 index of random-effects
models were deemed as indicative of between-study heterogeneity. The random-effects
model does not explain heterogeneity, and can be explored and reduced through subgroup
studies and meta-regression [21].

In the current study, to deal with heterogeneity, a meta-regression analysis was per-
formed on all response variables to find the best model that explains the between-study
variability of effect size estimations. In the meta-regression, the variable x represents the
characteristics of the studies (breed, lactation stage, type of oilseed and method of supple-
mentation, inclusion level, washout period and experimental design) that predict the study
effect size (θ̂k̂), as shown in the following model:

θ̂k̂ = θ + βxk + εk + ζk (2)

where θ̂k̂ is the observed effect size, θ is the intercept, βxk is a predictor (or covariate) xk with
a regression coefficient β (fixed effect), εk is the sampling error and ζk is the between-study
error (random effect).

The first step of meta-regression analysis is to incorporate all explanatory variables in
a full model; secondly, multi-predictor models were manually reduced through a backward
selection of variables until all predictors were significant (p < 0.05). Mixed-effects regression



Animals 2022, 12, 1642 5 of 21

models (meta-regression analysis) were constructed in the “metafor” package [22]. Models
were compared and selected by means of information-theoretic criteria using Akaike’s
Information Criterion and Bayesian Information Criterion; additionally, the goodness of fit
was evaluated by the coefficient of correlation analogue (R2) for meta-regression, which
was calculated as follows:

R2 =
τ2

REM − τ2
MEM

τ2REM
(3)

where τ2
REM is the estimated total heterogeneity based on the random-effects model and

τ2
MEM is the total heterogeneity of the mixed-effects regression model. Publication bias

was assessed using a graphical approach through funnel plots [23].

3. Results

In the current analytic review, the search strategy resulted in 581 articles. Some studies
were excluded for several reasons: not being scientific articles or being duplicates, non-
English language, published before 1999, combination of various oilseeds, not mainly
testing oilseed supplementation, not reporting cows’ ration information, not reporting
specific isomers of FA, not including a control group in the experimental design, not
reporting a measure of variability of the results and being meta-analyses or reviews. After
applying the inclusion and exclusion criteria, 78 trials over 33 articles published between
1999 and 2020 were included in the meta-analysis (Figure 1). The characteristics of studies
included in the meta-analysis are depicted in Table 1. In accordance with our results, the
most used oilseed in cow rations was linseed (57%), followed by soybean and rapeseed
(17 and 13%). The analyzed studies showed a wide range of oilseed supplementation
(2.08–17.7%) and most studies used Holstein cows (92%).

Table 1. Studies, characteristics of animals and oilseed, inclusion, washout and experimental design
included in meta-analysis.

Study Breed 1 Lactation Stage Type 2 Way 3 Inclusion (%) Washout (Days) Design 4

[24] H 2nd Lin Wh, Ex 16.4, 16.7 19 Cross
[25] H 1st Lin Wh 6.5 14 Long
[26] H 1st Sb, Rap, Cott Wh, Ex, Gr, 5, 10.1, 10.5 14, 18 Cross, Long
[27] H 1st Rap Gr 14 14 Long
[28] H 3rd Lin Wh 12.4 23 Cross
[29] H 1st Lin Wh 4.2 21 Cross
[30] H 2nd Sb, Cott Ex 11.9 21 Long
[31] H 2nd Rap, Lin Ex, Gr 5, 6.1 21 Cross
[32] H 1st Lin Ex 17.7 21 Long
[33] H 1st, 2nd Lin Ex 5, 10, 15 21 Cross
[34] H 1st Lin, Sb Wh 8, 16 84 Long
[35] H 1st Lin, Sb Rs 7.5 10 Cross
[36] H 3rd Lin Wh, Ex, Gr 12.1, 12.7 21 Cross
[37] H 3rd Lin, Rap Ex, Gr 3.9, 5.5 21 Cross
[38] H 2nd Lin, Rap Ex, Gr 5.9, 8.6 21 Cross
[39] H 2nd Sb Ex 7.5, 5.0 7 Long
[40] H 1st Lin, Rap Wh, Ex 2.5, 5.1 120 Long
[41] H 2nd Sb Wh, Ex 8.5 21 Long
[42] H 1st Sb, Lin, Sun, Cott Rs 7.5 14 Long
[43] H 1st Lin Ex 5 - Cross
[44] H 1st Lin Wh, Gr 7 14 Cross
[45] H 1st Lin Ex 6.5 14 Cross
[46] H 1st Lin Ex 10 14 Cross
[47] H 2nd Lin Ex, Gr 4.3, 8.1, 8.3, 11.8 14 Cross
[48] H 2nd Lin Wh 2.1, 2.2 7 Long
[49] H 1st Sun Gr 8 14 Cross
[50] JR 2nd Lin Gr 5, 10, 15 14 Cross
[51] H 3rd Cott Wh 12 - Long
[52] H 1st Sun Wh, Rs 7.8 14 Cross
[53] H - Lin, Rap Wh 6.6, 6.8, 8.3, 10.5 - Long
[54] H - Lin, Rap Wh 8.3 16 Cross
[55] H, BS 1st Sb Ex 10.6 14 Cross
[56] H 2nd Sb Ex 10.7 7 Long

1 H = Holstein; JR = Jersey; BS = Brown Swiss; 2 Lin = linseed; Rap = rapeseed; Cott = cottonseed; Sun = sunflower;
Sb = soybean; 3 Wh = whole; Ex = extruded; Gr = ground; Rs = roasted; 4 Cross = crossover; Long = longitudinal.
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3.1. Milk Yield and Composition

The mean values of milk yield and milk composition for the control groups and the
respective effect sizes of the oilseed-supplemented groups are shown in Table 2. The
meta-analysis showed no significant effect of oilseed supplementation on milk yield
(SMD =−0.06; p = 0.33) and lactose (SMD = 0.07; p = 0.27). Oilseed supplementation reduces
fat content (SMD = −0.21; p = 0.002) with a raw mean difference (RMD) of 0.11 g 100 g−1

between the control and supplemented groups. Figure 2 shows a forest plot of the effect of
oilseed supplementation on fat content compared with the control (I2 = 0.53%; p < 0.01),
grouped according to the type of oilseed supplemented. The supplementation of oilseeds
in cows was associated with a reduced protein content, by 0.04 g 100 g−1 (p = 0.007), com-
pared with a control group (SMD = −0.20; p = 0.003). There was evidence of significant
heterogeneity among studies for all milk yield and milk composition response variables
(I2 > 40.0).

Table 2. Effect of oilseed inclusion on milk yield, chemical composition and fatty acid profile of dairy cows.

Item n 1 Control Means
(SD)

Effect Size Heterogeneity

RMD 2 p-Value SMD 3 p-Value I2 RM 4 I2 MM 5

Milk yield (kg day−1) 73 28.02 (6.59) −0.25 0.200 −0.06 0.330 50.2 0.0
Fat content (g 100 g−1) 70 3.86 (0.46) −0.11 0.001 −0.21 0.002 53.0 25.8

Protein content (g 100 g−1) 69 3.18 (0.2) −0.04 0.007 −0.20 0.003 65.4 33.1
Lactose content (g 100 g−1) 53 4.77 (0.19) 0.01 0.280 0.07 0.270 43.5 19.0
Oleic acid (g 100 g−1 FA) 69 20.87 (5.04) 3.44 <0.001 1.50 <0.001 92.4 82.3

Linoleic acid (g 100 g−1 FA) 71 2.12 (0.51) 0.09 0.007 0.16 0.250 86.6 83.3
Linolenic acid (g 100 g−1 FA) 70 0.49 (0.25) 0.28 <0.001 1.68 <0.001 97.8 76.7
Vaccenic acid (g 100 g−1 FA) 70 1.61 (0.88) 1.03 <0.001 1.33 <0.001 99.7 95.2

CLA (g 100 g−1 FA) 77 0.54 (0.24) 0.27 <0.001 1.28 <0.001 99.4 78.5
Σ Omega−3 PUFA (g 100 g−1 FA) 33 0.74(0.27) 0.46 <0.001 2.23 0.001 97.1 53.0
Σ Omega−6 PUFA (g 100 g−1 FA) 33 2.12(0.54) −0.01 0.780 −0.09 0.530 81.0 48.0

SFA (g 100 g−1 FA) 30 63.54(17.03) −6.51 <0.001 −1.73 <0.001 83.1 7.6
UFA (g 100 g−1 FA) 28 28.72(5.95) 8.32 <0.001 3.79 <0.001 93.5 61.7

Atherogenic index (AI) 30 3.01(0.88) −1.01 <0.001 −2.47 <0.001 91.5 73.9
1 Number of trials comparing supplemented and non-supplemented treatments; 2 RMD, raw mean difference;
3 SMD, standardized mean difference; 4 heterogeneity of random effects model; 5 heterogeneity of mixed
effects model.

3.2. Fatty Acid Profile

Oilseed supplementation results in an increase in OA and LNA, compared to the
control group, with RMDs of 3.44 and 0.28 g 100 g−1 FA (p = 0.0001) (Table 2). The forest
plot shown in Figure 3 reveals a significant effect of oilseed supplementation on VA content,
with an increase of 1.03 g 100 g−1 FA; additionally, a high heterogeneity (I2 = 99.7%) was
observed for this outcome, which, in accordance with sub-grouping analysis shown in
the forest plot, can be primarily attributed to the type of oilseed supplemented. CLA
content was increased by 0.27 g 100 g−1 FA (p = 0.0001) by oilseed supplementation, an
enhancement of 50.0% in comparison with control group (Table 2). The between-study
response showed high variability in the CLA outcome (I2 = 99.4%), which can be partially
explained by the type of supplemented oilseed, as shown in Figure 4. LA was affected
little by oilseed supplementation, with an RMD of 0.09 g 100 g−1 FA (p = 0.007) and a
non-significant SDM (0.16; p = 0.25), as well as non-significant values of milk yield and
milk composition for the control groups and their respective effect sizes.
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the overall effect. RMD, raw mean difference.

The omega-3 PUFA were increased by oilseed inclusion in dairy cow diets, with an
RMD of 0.46 (p = 0.0001), in comparison with non-supplemented diets. According to the sub-
grouping analysis of omega-3 PUFA, the effect size and level of heterogeneity depended on
the method of processing oilseed, ranked: extruded > whole > ground > roasted (Figure 5).
Otherwise, oilseed diets were not significantly different from the control group with regard
to omega-6 PUFA (RMD = −0.01; p = 0.78). The pooled estimated effect size showed that
feeding with oilseed decreased the SFA content (SMD = −1.73; p = 0.0001) by 26.5% in
comparison with the control group (Table 2). Supplementing diets with oilseed significantly
increased the content of UFA in milk (SMD = 3.79; p = 0.0001). On the contrary, AI decreased
with oilseed feeding (SMD = −2.47; p = 0.0001). For all FA profile outcomes, a high level of
heterogeneity was observed among studies (I2 > 80%).

3.3. Meta-Regression

A meta-regression analysis was performed to explain the significant heterogeneity
(I2 > 40%). Eleven explicative variables were studied to explore between-study variability:
(1) cow breed, (2) lactation stage, (3) type of oilseed, (4) method of processing oilseed,
(5) level of inclusion, (6) duration of washout period to crossover studies, (7) type of
experimental design, (8) the NDF difference between supplemented and control groups,
(9) the forage difference between supplemented and control groups, (10) the LA differ-
ence between supplemented and control groups and (11) the LNA difference between
supplemented and control groups.

Increases in fat and omega-3 PUFA contents in the treatment group were associated
positively with the Jersey breed. The effect of lactation stage showed a significant relation-
ship with several outcomes, but there was no global trend and the association depends
on the output analyzed. Therefore, within the highlighted results, we found that the sup-
plementation of oilseed in cows during the first stage of lactation promotes an increase in



Animals 2022, 12, 1642 9 of 21

protein (β = 1.57; p < 0.01) and linoleic FA (β = 0.49; p < 0.05) contents, while decreasing
LNA (β = −2.4; p < 0.05), UFA (β = −7.31; p < 0.001) and AI (β = −0.89; p < 0.05).
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the combined effect size estimated, including the confidence intervals. The diamond represents the
overall effect. RMD, raw mean difference.

Concerning the type of supplemented oilseed, the inclusion of soybean increases OA
(β = 3.54; p < 0.05), CLA (β = 1.65; p < 0.05) and Σ omega-6 PUFA (β = 0.67; p < 0.01).
Feeding with sunflower reduced the fat content (β = −0.46; p < 0.05) but increased OA
(β = 4.92; p < 0.01) and CLA (β = 1.96; p < 0.05). Cows supplemented with rapeseed were
significantly associated with increased values of OA (β = 6.71; p < 0.05), Σ omega-3 PUFA
(β = 1.35; p < 0.05) and UFA (β = 12.25; p < 0.05).

The processing of oilseed showed the most consistent influence in almost all response
outcomes; only protein and lactose contents were not significantly associated with this
explanative variable. A positive relationship was found between ground oilseed supple-
mentation and LA (β = 0.43; p < 0.05) and OA (β = 2.63; p < 0.05) contents. Whole oilseed
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supplementation was associated with increases in fat (β = 0.21; p < 0.05), OA (β = 2.61;
p < 0.05), SFA (β = 4.25; P < 0.001) and AI (β = 1.23; P < 0.001), as well as decreases in
milk yield (β = −0.28; p < 0.05), CLA (β = −0.18; p < 0.05) and UFA (β = −10.98; p < 0.05).
Finally, the responses of LNA (β = 4.16; p < 0.005), OA (β = 4.41; p < 0.05), Σ omega-6
PUFA (β = 0.49; p < 0.05) and AI (β = 1.81; p < 0.001) were higher with roasted-based diets
(Table 3).

The contents of OA (β = 0.33; p < 0.05), Σ omega-3 PUFA (β = 0.04; p < 0.05) and UFA
(β = 0.79; p < 0.05) in milk increased linearly when increasing supplemental oilseed. A
negative dose-dependent response was observed to milk yield (β = −0.05; p < 0.05), LA
(β = −0.02; p < 0.05), LNA (β = −0.12; p < 0.05), Σ omega-6 PUFA (β = −0.01; p < 0.05),
SFA (β = −0.37; p < 0.001) and AI (β = −0.12; p < 0.05). However, the direction and level
of the relationship between intake and effect size differed among the different types of
oilseeds supplemented. For instance, as the bubble plot in Figure 6 shows, the global
response to oilseed supplementation showed a positive linear relationship between the
inclusion level and SMD of UFA outcome; nevertheless, similar effect size values were
observed for linseed and rapeseed, with different levels of supplementation. Additionally, a
variability of response was observed, associated with the supplementation level within the
oilseed group, as shown in Figure 7, where different levels of SMD of the AI outcome were
observed with the same levels of supplementation of linseed, which highlights a possible
interaction with other explicative variables such as processing and diet characteristics.
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type of oilseed.

Regarding diet characteristics, replacing forage with oilseed has a significant effect on
some FA profile outcomes. The results of the meta-regression revealed that an increase in
the difference of forage inclusion (supplemented minus control values) reduces the CLA
content (β = −0.09; p < 0.05) and Σ omega-6 (β = −0.11; p < 0.05); additionally, we observed
that UFA milk content increased with an increase in NDF difference (β = 0.19; p < 0.001).
The higher values of LA in the supplemented group were significantly related to the lower
values of lactose (β = 0.005; p < 0.001), LNA (β = −0.13; p < 0.001), OA (β = −0.23; p < 0.001)
and VA milk (β = −0.04; p < 0.05). A negative relationship was observed between the
difference of LNA and OA effect size (β = −0.15; p < 0.001).
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Table 3. Parameters of the meta-regression procedure with the outcome variables and effect size (raw mean difference) between oilseed-supplemented and control
treatments of dairy cows.

Item
Meta-Regression Parameters (β) Best Model

Animal Diet and Oilseeds Experimental
<I2 R2

Breed Stage Type 1 Way 2 Intake Linoleic Linolenic Forage NDF Washout Design

Milk yield (kg day−1) Rs −0.47 *; Wh −0.28 * −0.05 *** 100.0 100
Fat content (g 100 g−1) JR 0.38 * 2nd 0.39 * Sun −0.46 * Wh 0.21 * 0.01 * −0.07 * 51.3 57.8

Protein content (g 100 g−1) 1st 1.57 **;
3rd 1.57 * 0.02 * 49.3 53.1

Lactose content (g 100 g−1) Lin −0.09 *; Rap
−0.10 * −0.005 *** 56.3 74.7

Linoleic acid (g 100 g−1 FA) JR −0.61 * 1st 0.49 * Rap −0.96 * Gr 0.43 * −0.02 * 3.8 11.8

Linolenic acid (g 100 g−1 FA)
1st −2.4 *;

2nd −2.33 *
3rd −3.79 **

Rs 4.16 ** −0.12 * −0.13 *** −0.02 * 21.5 33.5

Oleic acid (g 100 g−1 FA) 3rd −4.07 * Rap 6.71 *: Sb
3.54*; Sun 4.92 **

Gr 2.63 *; Rs 4.41 **;
Wh 2.61 * 0.33 * −0.23 *** −0.15 *** −0.07 * −0.05 ** 10.9 9.8

Vaccenic acid (g 100 g−1 FA) Lin −3.79 ***; Rap
−3.92 ***; Sb −3.11 *** −0.04 * −0.02 *** Cross

−1.31 * 4.6 95.2

CLA (g 100 g−1 FA) Lin 1.29 *; Sb 1.65 *;
Sun 1.96 * Wh −0.18 ** −0.09 * −0.03 ** Long

1.45 *** 21.0 21.1

Σ Omega-3 PUFA
(g 100 g−1 FA)

JR 1.15 * Rap 1.35 * Gr −1.38 *; Rs −0.74 * 0.04 * 45.4 50.7

Σ Omega-6 PUFA
(g 100 g−1 FA)

Sb 0.67 * Rs 0.49 ** −0.01 * −0.11 * 40.7 75.1

SFA (g 100 g−1 FA) Wh 4.25 *** −0.37 ** 3.26 * Long
4.85 ** 90.7 96.7

UFA (g 100 g−1 FA) 1st −7.31 ** Rap 12.25 ** Rs −5.43 *; Wh
−10.98 *; Gr −14.66 ** 0.79 * −0.08 * 0.19 *** −0.15 *** 34.0 98.4

Atherogenic index (AI) 1st −0.89 *;
2nd 1.15 *

Rs 1.81 ***;
Wh 1.23 *** −0.12 * 0.01 ** 19.2 93.9

* p < 0.05, ** p < 0.01, *** p < 0.001. JR = Jersey; 1 Lin = linseed; Rap = rapeseed; Cott = cottonseed; Sun = sunflower; Sb = soybean; 2 Wh = whole; Ex = extruded; Gr = ground;
Rs = roasted; Intake, level of oilseed inclusion in the diet; Linoleic, difference of linoleic acid content of supplemented and control rations; Linolenic, difference of linolenic acid content
of supplemented and control rations; Forage, difference of forage inclusion level of supplemented and control rations; NDF, difference of NDF of supplemented and control rations;
Washout, days before the measurement of variables.
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The meta-regression outputs in the experimental design revealed that those longitudi-
nal designs were related to higher values of the effect size for CLA (β = 1.45; p < 0.001) and
SFA (β = 4.85; p < 0.001). Most mixed models explained more than 50% heterogeneity (R2)
for most of the outcome’s variables. Only LA, LNA and CLA had values of R2 that were
less than 33.5% and higher values of I2 in mixed models (I2 > 70%). These findings indicate
that unknown or not-reported factors from revised studies could affect the response to
oilseed supplementation.

4. Discussion

The main factor in the exclusion of the meta-analysis was the absence of a control
group, resulting in 33 articles with 78 trials. For this study, the Holstein breed was the
most used (92%), probably because it is considered the model breed for milk production
due to the animals’ characteristics [57]. In total, 51, 38, and 12% of trials were conducted
in the first, second and last (third) stages of lactation, respectively, which is congruent
with the crossover of experimental design (59%). Flaxseed predominated among the
trials (57%), followed by soybean (17%) and rapeseed (13%); similarly, the process mostly
used in oilseeds was extrusion followed by the use of whole oilseeds (40 and 35%). The
supplementation range was from 20.8 to 177.0 g kg−1 DM, which depended mainly on the
availability of the ingredient used in each study.

4.1. Milk Yield and Composition

The inclusion of oilseeds in the diet did not affect milk yield due to the isoenergetic
balance between diets shown in the great majority of trials, thus not compromising the
productive behavior of ruminants [58]. Similarly, Rabiee et al. [59] did not show a statistical
difference with the use of oilseeds; however, it can increase milk production with the use of
a different source of lipids, where the variation is attributed to the dry matter intake and
energy content of the diet.

The decrease in milk fat content is affected by the reduction in the action of bacterial
fibrolytic enzymes, precursors of acetic fermentation [60], and the production of beta-
hydroxybutyrate and some lipogenic enzymes necessary for de novo synthesis in the mam-
mary gland of the main components in milk fat (short- and medium-chain FA) [59,61,62].
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Additionally, at the rumen level, UFA has shown toxic effects on some microorganisms [56]
by reducing microbial populations and their fermentative activity [63].

Sunflower, cottonseed and soybeans largely led to a reduction in milk fat, which seems
to be related to the amount of LA (greater than 50 g 100 g−1 FA), although this is not clear.
However, LA is thought to be a substrate in the production of trans isomers, which have
been related to milk fat depression syndrome [64]. The supplementation of flaxseed and
rapeseed had a lower effect on LA content, which can be associated with the saturation by
alternative pathways of their major FA [63], resulting in a lower number of intermediate
isomers that inhibit the de novo synthesis of FA in milk fat [64].

In cows, it has been estimated that for every 100 g of fat intake, 0.03% of milk protein
is reduced [65]. In this review, we assumed that the substitution of energy ingredients
in starch-deficient ruminant diets, such as lipids, affects microbial protein synthesis [60],
resulting in a decreased supply and absorption of amino acids in the duodenum, which are
required for the formation of milk protein [66]. However, it is possible that milk protein is
reduced by the relative decrease in ruminal microorganisms [62,63], caused by the presence
of UFA in the rumen [56], which are the main components of the FA structure of the
evaluated oilseeds.

The obtained heterogeneity for response variables was reduced with the mixed model
(meta-regression) in comparison with the random model. Therefore, our results reveal that
the used moderating variables covered a considerable proportion of the between-study
variation and must be considered in the design of future studies.

4.2. Milk Fatty Acid Profile

The increase in OA in milk could be due to the contribution of OA, LA and LNA in
the diet through oilseeds, where the final step in the rumen is the saturation to stearic FA,
but in the mammary gland it is desaturated by the enzyme delta-9 desaturase to OA [59];
it should be remembered that the ruminal biohydrogenation pathway of LNA does not
include the direct synthesis of OA [67]. In the same sense, LNA that managed to escape
biohydrogenation in the rumen was reflected by the increase in its content in milk [64].
Similarly, an increase in these FA in milk was observed via the supplementation of soybean,
rapeseed, sunflower and flaxseed in the diet of cows [68]. In contrast, Akraim et al. [24]
achieved a high intake of LNA in dairy cows through linseed, but this FA was not expressed
in milk.

Vaccenic FA is a biohydrogenation intermediate that is related to the incomplete satu-
ration of LA and LNA [64], the major FA of the oilseeds shown in this review. Theoretically,
the presence of LA and LNA in the rumen favors the acceleration of the first step in bio-
hydrogenation and reduces the final saturation step towards stearic FA [69], resulting in
an increased flow of the VA into the posterior digestive tract and then into the mammary
gland to be secreted into milk [64]. VA is a substrate in de novo synthesis in the mammary
gland by delta-9 desaturase enzyme activity to produce CLA [70]. Therefore, the increase
in VA is more closely related to greater contents of CLA in milk; this fact could explain
the higher levels of CLA in animals supplemented with oilseeds found in the current
study. However, the level of response depends on the type of oilseed provided, since the
greatest effect size was observed for sunflower seed, soybean and flaxseed, which can be
associated with the higher contents of LA and LNA (>57%) in these oilseeds. Additionally,
intake of VA increases serum CLA levels in humans [71]; both FA (VA and CLA) have
been linked to human health with decreased chronic diseases [72], and the intake of CLA
and VA has been shown to lead to a reduction in coronary heart disease, low incidence
of atherosclerosis [73], decreased risk of hypertension [74], low risk of type II diabetes
mellitus [75] and decreased obesity [76]; in addition, CLA has been attributed to reducing
cancer induced in laboratory animals [10], and has great potential to improve menopausal
symptoms, bone health, sarcopenia and sarcopenic obesity [77].

Including oilseeds in the diet of cows reduces the content of SFA in milk and increases
the concentration of UFA, possibly by decreasing the production of volatile fatty acid (VFA)
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in the rumen, specifically acetic acid, the main substrate for the de novo synthesis of short-
and medium-chain SFA [78]. Propionic acid production can be affected by the substitution
of starchy energy ingredients and/or non-structural carbohydrates in the diet [79]. The use
of oilseeds in ruminant diets can increase propionic acid production and decrease acetic
acid production proportionally. This is because of the release of glycerol from triglycerides
in lipolysis [80]. This alteration in the rumen ratio of acetic to propionic acids does not
affect milk yield but creates the conditions (mainly rumen pH and/or microbial population)
for increased UFA content [81]. Long-chain PUFA that escape from biohydrogenation are
absorbed by the intestine and increase the ratio of UFA in milk at the expense of a decrease
in SFA [58], which may be conditioned by an inhibitory effect of acetyl-CoA carboxylase
and fatty acid synthetase enzymes at the mammary gland level [82].

The importance of increasing the proportion of PUFA in milk resides in the fact
that human consumption of PUFA can reduce obesity and mortality from cardiovascular
problems by up to 30% and decreases the incidence of diabetes by up to 50% [83]; the
omega-3 PUFA showed a 20% reduction in mortality in patients with cardiac problems [84].
Our review showed a 62% increase in omega-3 PUFA in cow’s milk with the inclusion
of oilseeds as a dietary supplement. In this regard, extruded and ground whole oilseeds
showed the greatest effect, possibly due to the greater availability of these PUFA that have
escaped ruminal biohydrogenation by being absorbed by the small intestine and secreted
in milk; although, the pericarp of these oilseeds plays an important role in the protection of
UFA by limiting biohydrogenation [63].

The AI proposed by Ulbricht and Southgate [85] is the sum of hypercholesterolemic
SFA content divided by the sum of protective UFA. A low AI reflects milk with a low SFA
content [86]; therefore, the consumer reduces the risk of fat contributing to the development
of atheroma [87]. In this sense, this review demonstrates that there is an adequate relation
between the biocomponents of milk produced by cows supplemented with oilseeds, i.e.,
FA profile, and so can be considered as a functional food with benefits on the human
health. However, the milk composition and the FA profile showed a high variability
between studies in response to oilseed supplementation. Therefore, considering the role
of covariates through meta-regression analysis is a fundamental step to provide a full
understanding of the oilseed supplementation strategy in dairy cows.

4.3. Meta-Regression

Our results showed a higher milk fat content in Jersey cows; however, these findings
must be cautiously considered due to the reduced number of studies available in this breed.
The higher milk fat content found in Jersey cows compared to that of Holstein could be
associated with the higher concentration of SFA (lauric, myristic, palmitic, and stearic) and
UFA (LA) in Jersey compared to Holstein cows [88]. Carroll et al. [89] suggest that the
differences in fat content between cow breeds is associated with the expression and activity
of acetyl-CoA carboxylase and mammary stearoyl CoA desaturase, which are responsible
of FA and UFA synthesis, respectively. Additionally, several authors reported a positive
relationship between the diameter of the milk fat globule and fat content [90,91]. In this
sense, the size of the milk fat globule can be explained partly by the greater fat content in
Jersey cow´s milk, supported by the fact that fat globules more than 50 mm in diameter are
more numerous in Jersey than Holstein cows by a factor of 50 [89].

The composition of cow’s milk changes with the lactation stage [92]. The meta-
regression showed an effect of the lactation stage on the response level to oilseed sup-
plementation of some milk components. The response in terms of milk protein to the
intervention factor was higher at the beginning and the end of lactation, possibly due to the
amount of milk produced [93]. On the other hand, the effect size of oilseed supplementation
with regard to fat content was larger when the experimental period was performed in the
second stage of lactation, which can be explained by the stronger relationship between
energy balance and milk fat synthesis. During the second stage of lactation, after the peak
of lactation, there is an increase in dry matter intake, leading to an increased energy supply
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used for de novo milk fat synthesis [94]. With regard to the negative relationship observed
in UFA (LNA and oleic acid) from experiments carried out in the third stage of lactation, our
results are in agreement with Stoop et al. [92], who reported a lower content of C18 FA and
high proportion of short- and medium-chain FA (C6:0 to C14:0) in milk towards the third
stage of lactation. This fact could explain the negative effect of AI in this lactation stage.

The high LA content of sunflower seed (60.4% of FA) affected milk fat content. Supple-
menting with PUFA-rich sources reduces acetic and butyric fermentation in the rumen and
consequently decreases de novo synthesis in the mammary gland and inhibits lipogenic
enzymes [95]. Contrary to this, the addition of sunflower to cow diets has a positive effect
on the OA content, possibly due to the FA that escape ruminal biohydrogenation and
are absorbed by the small intestine to be secreted in milk and/or by the action of the
enzyme delta-9 desaturase that has its action in the mammary gland [59]. Additionally, the
inclusion of rapeseed and soybean in dairy cow rations results in a positive relationship
with the OA content, which can be associated with the fact that these oilseeds have a high
concentration of this FA (54.6 g and 22.9 g 100 g−1 FA). Additionally, Sterk et al. [68] found
a positive relationship with regard to LA content between diet and milk. Thus, the type of
oilseed used in cow diets provide the substrates for the different contents of FA in the milk
produced and therefore also influences the level of response to supplementation.

The inclusion of rich sources of PUFA in the diet of ruminants has shown increases
in the concentration of omega-3 PUFA in meat and milk [14,96]. The type and source of
PUFA consumed by the animal can have different impacts on microbial populations and
rumen fermentation [97]. These adverse effects of PUFA may be amplified through the use
of vegetable oils in the diet compared to oilseeds [98]. Studies using sunflower oil [99] and
soybean oil [100] in the diet of dairy cattle reflected an increased concentration of OA in
milk, as well as a reduction in short- and medium-chain SFA (C10:0-C16:0). The decrease in
VA in milk fat with dietary supplementation of sources of OA, LA and LNA (majority FA
in rapeseed, soybean and linseed) could be explained by the decreased synthesis of VA in
the ruminal biohydrogenation of PUFA; the level of supplementation was not sufficient
to show an effect on this FA and there was a complete biohydrogenation of OA, LA and
LNA to stearic FA. The interactions between the type of oilseed and level of inclusion
are shown in Figures 6 and 7, which show that the highest levels of response to oilseed
supplementation were reached with inclusions of 15% of DM of linseed and 6–7% of DM
of rapeseed.

The grinding process exposes the oilseeds’ FA to biohydrogenation in the rumen,
being the most affected the UFA and omega-3 PUFA [63], which is in accordance with the
results of the current study; however, some FA such as LA can escape the biohydrogenation
process, and hence reach the mammary gland [64]. Additionally, as explained above, the
OA may escape this hydrogen saturation in the rumen and/or be desaturated from stearic
FA in the mammary gland. The unprocessed oilseeds have a negative effect on dry matter
intake, thus promoting a decrease in milk yield [57] with increases (β = 0.21; p < 0.05) in
milk fat content. Unprocessed oilseeds have a negative effect on UFA and positive one on
SFA, which may be due to a slower passage rate which allows the rumen microorganisms
to saturate PUFA and MUFA of oilseeds [60].

The pericarp of whole oilseeds reaching the small intestine does not allow the absorp-
tion of the contained FA [63]. In this sense, the positive effect of SFA and negative effect of
UFA with this supplementation strategy (whole oilseed) impacts on a higher AI, which is re-
lated to the higher content of SFA and therefore a less positive human-health effect [86,101].
Roasted oilseeds (whole and ground) are better utilized by ruminants [102], but in our
review only had a positive effect on omega-6 PUFA, LA and OA, like the results reported
by Rafiee-Yarandi et al. [103], which may be related to changes in structural components
that increase the level of protection of FA to ruminal biohydrogenation to some degree [61].
On the other hand, total UFA are affected, especially omega-3 PUFA, which may be due to
the increased instability of these FA with the heat of cooking. This effect on UFA (omega-3)
resulted in a higher AI, which is undesirable in cow’s milk; however, the type of oilseed to
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be roasted should be considered; for example, including roasted ground soybeans in the
diet of cows resulted in a higher UFA content and lower SFA content, having a lower AI,
therefore producing healthier milk [101].

Milk’s fat content and FA composition are strongly affected by the fiber content and F:C
ratio. The increasing of the F:C ratio is a strategy to increase the levels of PUFA in milk [104],
as is revealed in the meta-analysis carried out by Angeles-Hernandez et al. [105], who
reported higher levels of milk fat (>0.32 g 100 g−1) and CLA content (>2.28 g 100 g−1 FA)
in diets with an inclusion of at least 40% DM of forage. Additionally, the consumption of
appropriate of levels of high-quality forage to allow the rumen functions to be maintained
under optimal conditions [64,106]. From another perspective, diets with a low F:C ratio,
and associated with a ruminal pH below 6.0, reduce PUFA biohydrogenation, resulting in
alternative routes and changes in the production of biohydrogenation intermediates [104].
In relation to the intervention factor assessed in the current work (oilseed supplementation),
an interaction between the F:C ratio and the response to the supplementation of oil sources
was reported by Palmquist and Jenkins [60]. Additionally, Ueda et al. [95] observed a
significant interaction between a high forage or high concentrate ratio in the diet and
flaxseed oil supplementation on ruminal digestion.

The above-mentioned studies support the role of the forage-inclusion level covariate
as the source of between-study variability. The significate interaction of this covariate was
attributed to the CLA, Σ omega-6, and SFA outcomes. This significant relationship can be
explained by the fact that the PUFA-rich oil supplementation decreased de novo synthesis
in the mammary gland, which can be associated with the reduction in the synthesis of
acetate and butyrate, or with the changing in the hydrogenation pathway generating FA
with the subsequent inhibition of lipogenic enzymes [95]. Certainly, Castro et al. [107]
assumed a reduced lipogenic activity in the mammary gland due to the effect of the addition
of PUFA-rich sources in the diet with mixtures of conserved forages, which is reflected in
the lower total fat content in milk compared to the control; in addition, the CLA content in
milk was lower with the supplementation of LA compared to LNA, due to the inclusion
of soybean and flaxseed oil in the diet, respectively. With respect to CLA synthesis in
the mammary gland, the activity of the enzyme delta-9 desaturase is highly correlated
with VA content [25]. However, changes in rations, by manipulating the F:C ratio or oil
intake, cause modifications in the microbial population, which could alter the ruminal
biohydrogenation of MUFA and PUFA, promoting the synthesis of specific isomers, which
alters the availability of VA by the mammary gland [64].

In accordance with our findings, the level of NDF of diets affects the response to oil
supplementation to fat content, OA and UFA outcomes. In this sense, Sterk [68] stated that
the NDF content of the diet affects the UFA in milk content, but the degree of affectation
is dependent on the form of supplementation of rich sources of FA in the diet. The effect
of dietary NDF content on the UFA content in milk is more negative when the source of
UFA in the diet is in free oil form, in contrast to the protected form [68]. A low dietary fiber
content is related to less complete biohydrogenation [98], which would explain the higher
proportion of UFA in milk fat. Additionally, the same authors [68] indicated that the effect
of NDF content depends on the type of main forage in the diet and the UFA content of the
diet. The milk FA profile is a product of the manipulation and interaction of a set of factors
such as: diet composition, feed intake, ruminal fermentation pattern, lipid metabolism in
the liver, body fat mobilization, ruminal biohydrogenation and bacterial degradation of FA
and synthesis and absorption of FA in rumen and mammary glands [92,93]. We therefore
suggest that these factors (almost the same as those reported in the current study) must
be considered at the farm and industry levels in the design of feed strategies and in the
research process to reduce the noise effect, taking into account the role of these factors as
covariates when it is possible.

The cross-over design determined the allocation of two or more treatments to the same
experimental unit but in different periods. In this sense, there should be no carry-over
or lasting effect for the previous treatment. Hence, the purpose of wash-out periods is to
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eliminate the effect of the previous treatment [107]. Our result revealed significant effects of
the experimental design and length of wash-out periods on some of the milk components,
mainly those associated with the FA profile. Our meta-regression results revealed that the
response to oilseed supplementation decreases as the number of wash-out days increases
to LN, OA VA, CLA and UFA outcomes, which could elucidate a possible cumulative
effect of previous treatment in the cross-over design when the wash-out period is short.
Therefore, to define the duration of wash-out periods, the variable response and nature
of the treatment must be taken into account [108]. According to our results, cross-over
experiments designed to evaluate the effect of oilseed inclusion on milk composition must
consider a minimum wash-out period of 20 days to avoid a type I error.

5. Conclusions

In this review, based on our meta-analysis, we found that the higher level of oilseed
supplementation had a positive linear effect on the unsaturated fatty acid content, when
linseed, rapeseed, and soybean were used. The level of forage in the diet was found to
have a strong relationship with the contents of saturated fatty acids in milk. Interestingly,
experimental washout periods affect the contents of unsaturated fatty acids, specifically
rumenic (CLA), vaccenic, linolenic, and oleic fatty acids. Additionally, our analysis showed
that the crossover statistical design affects the content of vaccenic fatty acid in milk fat,
while the longitudinal design benefits CLA; however, the latter design positively affects
saturated fatty acid contents. Overall, our study could help to refine further research efforts
aiming to increase the presence of bioactive fatty acids in milk. The findings from our study
could be used to find efficient nutritional strategies in different breeds of cows at different
stages of lactation to improve not only milk fatty acids, but also other milk components
that are relevant for milk processing.
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